DOI: 10. 13475/j. fzxb. 20170901207

有机钛--硅催化剂合成聚酯的动力学研究

娄佳慧¹²³,王 锐¹²³,张文娟¹²³,董振峰¹²³,朱志国¹²³, 张秀芹¹²³,刘继广¹²³

(1. 北京服装学院 材料科学与工程学院,北京 100029; 2. 服装材料研究开发与评价重点实验室,北京 100029;3. 北京市纺织纳米纤维工程技术研究中心,北京 100029)

摘 要 为开发稳定且具有较高活性的钛系催化剂,用制备得到的系列新型钛-硅(Ti-Si)复合催化剂催化合成聚对 苯二甲酸乙二醇酯 研究了聚合反应动力学及催化剂的用量、缩聚温度对聚合反应和聚酯切片性能的影响,将其与传 统锑系催化剂三氧化二锑(Sb₂O₃)、钛系催化剂Ti(X)进行对比。结果表明:在研究范围内,Ti-Si 催化剂的最佳用量 为19 μ g/g 缩聚温度为281 °C;Ti-Si 催化剂对酯化和缩聚反应均有催化作用,可降低酯化反应的活化能,活化能仅为 42.49 kJ/mol 提高了酯化反应速度;Ti-Si 催化剂具有较高的催化活性,其缩聚时间比 Sb₂O₃、Ti(X)均缩短约40 min, 缩聚活化能也低于 Sb₂O₃,且与Ti(X)相近;采用 Ti-Si 催化剂制得的聚酯切片在热性能、力学性能方面均与 Ti(X)相 似,但优于 Sb₂O₃合成的;在色度上,Ti-Si 催化剂合成的聚酯的亮度优于 Sb₂O₃的 b 值与 Ti(X)的相似。 关键词 聚对苯二甲酸乙二醇酯;钛系催化剂;酯化反应;缩聚反应;反应动力学 中图分类号:TQ 342.2 文献标志码:A

Synthesis kinetics of polyester by organic titanium-silicon catalysts

LOU Jiahui^{1 2 3}, WANG Rui^{1 2 3}, ZHANG Wenjuan^{1 2 3}, DONG Zhenfeng^{1 2 3}, ZHU Zhiguo^{1 2 3}, ZHANG Xiuqin^{1 2 3}, LIU Jiguang^{1 2 3}

(1. School of Materials Science and Engineering , Beijing Institute of Fashion Technology , Beijing 100029 , China;

2. Beijing Key Laboratory of Clothing Materials R&D and Assessment , Beijing 100029 , China;

3. Beijing Engineering Research Center of Textile Nanofiber, Beijing 100029, China)

Abstract In order to prepare stable and highly active titanium catalyst , a series of titanium-silicon (Ti-Si) composite catalysts were prepared and the best catalyst was selected. By employing this catalyst in preparation of polyethylene glycol terephthalate(PET) , the influence of catalysts dosage and polycondensation temperature on polymerization reaction and the properties of polyester chips were investigated. In addition , kinetics for polymerization was studied. Polymerization results were also compared with classical antimony catalyst (Sb₂O₃) and titanium catalyst (Ti(X)). Results show that the optimized dosage of catalyst is 19 μ g/g and the suitable polycondensation temperature is 281 °C under the testing condition. Ti-Si catalyst plays an effective role both in esterification and polycondensation. Ti-Si catalyst has much lower esterification activation energy which is only 42. 49 kJ/mol , and it accelerates the esterification reaction. The polycondensation time by Ti-Si is much shorter (40 min) than other catalysts Sb₂O₃ and Ti(X). The kinetic data for polycondensation demonstrate that the condensation activation energy by Ti-Si is similar to Ti(X) , but lower than Sb₂O₃. The resultant PET chips by Ti-Si catalyst has similar thermal and mechanical properties with those by Ti(X) , but better than those by Sb₂O₃. In addition , the chips by Ti-Si possesses brighter chroma than those by Sb₂O₃ and have the similar *b* value with Ti(X).

Keywords polyethylene glycol terephthalate; titanium catalyst; esterification; polycondensation; reaction kinetics

收稿日期:2017-09-05 修回日期:2018-04-11 基金项目:国家重点研究计划专项(2016YFB0302700);中国石油化工集团公司委托项目(216089) 第一作者简介:娄佳慧(1993—) 友 硕士生。主要研究方向为纤维改性。

通信作者: 王锐 ,E-mail: clywangrui@ bift. edu. cn。

聚对苯二甲酸乙二醇酯(PET) 是线型饱和聚 酯,其综合性能优良^[1],广泛应用于纤维、塑料等行 业。催化剂在 PET 的制备过程中发挥着非常重要 的作用。目前,在聚酯原料制备中,90%的聚合工厂 依然采用性能良好、价格低廉、副反应少的锑系催化 剂;然而,重金属锑在聚合物中的残留以及对其他印 染过程造成的污染越来越受到人们的重视,世界各 国正在逐步限制其应用,因此,纺织行业亟需开发新 型聚酯用环保催化剂。目前,国内外众多学者致力 于研究环保高效无毒的钛系催化剂,其催化活性高, 但合成过程中副反应较多,得到的聚酯色相普遍偏 黄,且催化剂存在易于水解、稳定性不高等问题。

本文制备了一种新型的钛-硅(Ti-Si)复合系催 化剂 探索磷稳定剂的添加量对酯化、缩聚反应和产 物性能的影响 ,优化得到最佳催化剂体系及用量 ,并 将其与传统催化剂三氧化二锑(Sb₂O₃)、钛系催化 剂(Ti(X))进行对比 ,以期开发出稳定、具有较高催 化活性的新型 Ti-Si 催化剂 ,实现产业化生产。

1 实验部分

1.1 实验原料与仪器

原料: 对苯二甲酸(PTA)、乙二醇(EG)、抗氧 剂 1010,中国石化天津分公司;三氧化二 锑(Sb₂O₃),上海试剂厂;亚磷酸三苯酯(TPP),分析 纯,中国医药公司;苯酚(C₆H₆O),分析纯,北京化学 试剂公司;1,12,2-四氯乙烷(C₂H₂Cl₄),分析纯,天 津市大茂化学试剂厂;钛酸酯、硅酸酯、含磷有机酸、 钛系催化剂,均为市售;钛-硅催化剂,实验室自制。

仪器: 2 L 不锈钢反应釜,扬州惠通化工科技股 份有限公司; Q2000 型差示扫描量热仪,美国 TA 公 司; SC-100 型全自动色差计,北京康光光学仪器有 限公司; Instron 电子万能材料强力测试仪,美国英斯 特朗公司; HAAKE Minijet 微量注射成型仪,德国哈 克公司。

1.2 催化剂的制备

将钛酸酯和有机硅酸酯按 Ti 和 Si 的量比为9:1 在一定条件下配制成复合物,并添加适量的乙二醇 及含磷有机酸类稳定剂制备 Ti-Si 催化剂。

1.3 聚对苯二甲酸乙二醇酯的合成

采用直接酯化法合成 PET,将原料 EG 与 PTA 按照量比为1.2:1加入2L反应釜中,然后加入催化 剂 控制反应温度、压力进行酯化反应,每隔一定时 间记录反应过程中的出水量,直到酯化结束。

然后进入常压缩聚反应,加入稳定剂 TPP 和抗 氧剂 1010,此过程初始阶段单体对苯二甲酸乙二醇酯 (BHET) 开始形成聚酯分子链; 随着反应的进行进入 低真空反应阶段 通过除去小分子物推动平衡反应向 右进行; 低真空反应 30 min 后,抽真空保持反应釜真 空度小于 100 Pa 进入高真空缩聚。反应达到一定黏 度后 降低反应釜转速,当黏度到达最终排料条件时, 反应结束。将物料经水冷铸条, 切粒后备用。

1.4 测试方法

1.4.1 切片质量指标测试

按照 GB/T 14190—2008《纤维级聚酯切片(PET)试验方法》测试 PET 切片的特性黏度、色度、端羧基含量和二甘醇质量分数等。

1.4.2 热性能测试

采用差式扫描量热仪(DSC)测试 PET 切片的 热性能。在氮气氛围下,先将样品以10 ℃/min 升 温至 300 ℃,恒温 5 min,再以10 ℃/min 降至 10 ℃。

1.4.3 力学性能测试

采用 HAAKE Minijet 微量注射成型仪将 PET 切 片注塑成哑铃状样条 然后采用 Instron 电子万能材 料强力测试仪进行力学性能测试,拉伸速度 为20 mm/min。

2 结果与讨论

2.1 磷添加量对缩聚及聚酯的影响

钛-硅催化剂存在光照和储存稳定性较差,在聚 合体系中溶解度差,分布不均一,易水解等问题^[2], 本文通过在 Ti-Si 中添加含磷有机酸,提高催化剂的 放置及使用稳定性。由于不同磷含量的 Ti-Si 催化 剂的酯化时间均在 85 min 左右,因此主要讨论磷含 量对缩聚反应的影响。采用磷质量分数分别为 0%、2.20%、6.60%、11.01%的 Ti-Si 催化剂,其添 加量为 19 μg/g(以 Ti 和 PTA 的质量比计算),控制 最终缩聚温度为 281 ℃ 制备出 4 种聚酯切片,编号 为 1[#]~4[#]。表 1 示出不同磷添加量的 Ti-Si 催化剂 对 PET 缩聚反应时间及聚酯样品质量的影响。

表1 不同磷添加量对缩聚时间和聚酯切片性能的影响 Tab.1 Influence of different phosphorus dosages on polycondensation time and properties of PET chips

样品 编号	缩聚时间/ min	特性黏度/ (dL•g ⁻¹)	L值	<i>b</i> 值
1#	>180	0.49	43.72	7.44
2#	110	0.64	43.67	6.54
3#	115	0.65	43.49	6.74
4#	120	0.66	43.97	7.03

从表1可知,添加含磷稳定剂后制备的聚酯样

品($2^{*} \sim 4^{*}$)的特性黏度(η)均在 0.63 ~ 0.66 dL/g 之间,与未添加含磷稳定剂制备的聚酯(1^{*})相比明 显较大,且缩聚反应时间明显缩短。当催化剂中磷 质量分数为 2.20%(2^{*})时,其缩聚时间最短。这是 因为未添加含磷稳定剂时,催化剂稳定性较差,在聚 合过程中发生部分水解或醇解,并伴随副反应,因此 聚合反应速度下降。当反应时间达到 180 min 时, 产物黏度达到最大值,且随着反应时间的延长,产物 发生降解,黏度降低而无法达到生产要求。

钛系催化剂在催化合成聚酯时存在聚酯切片色 泽发黄的问题,而色相由 *L* 值和 *b* 值表示: *L* 值越 高,表示聚酯切片越亮; *b* 值越高,表示聚酯切片越 黄^[3]。从表1可看出,不同磷添加量条件下制备的 聚酯 *L* 值相差很小,因此亮度相近,但2[#]切片*b* 值最 小,色度最好。综合考虑聚合物的缩聚时间、黏度及 色相,选择磷质量分数为 2.20% 的 Ti-Si 催化剂进 行后续研究。

2.2 Ti-Si 催化剂用量对缩聚的影响

采用磷质量分数为 2.20% 的 Ti-Si 催化剂,在 缩聚温度为 281 ℃的条件下合成聚酯。表 2 示出催 化剂用量对聚酯性能和缩聚时间的影响。可见:在 相同搅拌功率排料的情况下,随着催化剂 Ti-Si 用量 增加,聚酯黏度相差不大,缩聚时间呈先缩短后延长 的趋势; 当催化剂用量为 25 μg/g 时,聚酯切片的 b 值明显增大。这是因为催化剂用量增加,不仅使 缩聚反应速率增大,同时使副反应增多,所以导致b 值增大,聚酯颜色发黄。综合考虑色度和缩聚时间, 当催化剂用量在 19 μg/g 时缩聚时间较短,聚酯 b 值较低,因此,选择催化剂最佳用量为 19 μg/g。

表2 催化剂用量对聚酯切片性能和缩聚时间的影响

Tab. 2Influence of catalyst amount on properties of
PET chips and polycondensation time

Ti-Si 用量 / (μg•g ⁻¹)	缩聚时间/ min	特性黏度/ (dL•g ⁻¹)	L值	b 值
10	240	0.63	44.87	6.68
15	137	0.64	43.40	6.37
19	110	0.64	43.67	6.54
25	65	0.63	42.43	7.69
30	110	0.62	43.00	7.46

2.3 聚合温度对缩聚的影响

温度是影响聚合的重要因素,酯化反应采用逐步升温方式,BHET的缩聚虽是放热反应,但是温度升高必将加快反应速度,所以要合理控制缩聚后期的温度。选取在267、273、281 ℃(低于290 ℃,因为钛系催化剂高温时副反应剧烈)条件下进行聚合反应,控制温度波动范围为 – 1 ~ 1 ℃。将其与 Sb₂O₃和Ti(X)催化剂进行比较,表 3 示出不同缩聚温度条件下合成的聚酯切片性能。

农了 不同组承温及对承留切开住能引起啊

 催化剂 名称	缩聚温度/ ℃	缩聚时间/ min	特性黏度/ (dL•g ⁻¹)	端羧基含量 / (mol•t ⁻¹)	二甘醇 质量分数/%	熔点/ ℃	L值	b 值
	267	230	0. 63	7.94	2.256	252. 1	34.46	1.55
$\mathrm{Sb}_2\mathrm{O}_3$	273	160	0.63	9.35	2.092	252.9	35.24	1.61
	281	150	0.63	11.13	1.955	253.0	34.46	2.08
	267	230	0. 63	6.35	1. 533	254.9	42.22	6.21
Ti(X)	273	160	0.63	7.43	1.511	254.5	42.82	5.80
	281	160	0.63	12.14	1.431	255.5	44.50	6.56
	267	240	0.64	8.47	0. 683	254.5	42.72	6.11
Ti-Si	273	143	0.65	9.06	0.714	252.8	41.47	7.69
	281	110	0.64	10. 25	1.759	253.4	43.67	6.54

Tab. 3 Influence of different polycondensation temperatures on properties of PET chips

注: Ti(X) 催化剂的用量为 19 μ g/g Sb₂O₃ 的用量为 334 μ g/g(以 Sb 与 PTA 质量比计算)。

由表 3 可见 3 种催化剂催化合成聚酯的缩聚 时间均随着缩聚温度的升高而缩短。Ti-Si 催化剂的 缩聚时间对温度更为敏感,当缩聚温度由 267 °C 升 至 281 °C 时,缩聚时间大大缩短,由 240 min 缩短至 110 min;相同条件下,Ti(X)催化剂体系的缩聚时间 由 230 min 缩短至 160 min:因此,Ti-Si 催化剂催化 效率更高。3 种催化剂催化合成的聚酯切片的特性 黏度均在 0.62 ~ 0.64 dL/g 之间,而普通纤维级 PET 树脂特性黏度通常为 0.62 ~ 0.68 dL/g^[4],所以 3种催化剂催化合成的聚酯切片均达到该要求。

端羧基是聚酯切片的重要质量指标。由表3可 知3种催化剂催化合成聚酯的端羧基含量均随着 缩聚温度的升高而增加,这是因为端羧基的来源有 酯化带来的端羧基、副反应热降解和热氧化降解 等^[5],所以温度升高,缩聚反应中的热降解和热氧 化降解副反应必然会加剧,使端羧基含量升高。一 般PET切片端羧基含量要求小于40 mol/t^[6],所以 Ti-Si 催化剂在不同温度条件下得到的聚酯切片均 符合该要求。

聚酯切片的另外一个重要指标是二甘醇 (DEG)质量分数。随着PET大分子中醚键含量的 增加,链段规整性遭到破坏,使聚合物熔点降低, 影响成纤加工性能,但同时也会提高纤维上色率。 改变缩聚温度,3种催化剂催化得到的聚酯的二甘 醇质量分数变化并不一致,Ti(X)和Ti-Si催化剂 制得的聚酯切片的二甘醇质量分数均低于 Sb₂O₃, 这是因为二甘醇主要由酯化过程中的副反应产 生^[7],而钛可加速酯化反应,从而减少二甘醇的生 成,所以 Ti(X)和 Ti-Si 催化剂得到的二甘醇质量 分数均较低。

此外,温度和催化剂种类对聚酯切片的色度也 有较大影响。由表 3 可知: Ti-Si 催化合成的聚酯 L值高于 Sb₂O₃ 催化合成的聚酯 表明 Ti-Si 催化合成 的聚酯亮度大,这是因为 Sb₂O₃ 中的 Sb³⁺在缩聚时 可被副反应产物乙醛还原生成金属锑,使合成的 PET 切片呈灰雾色^[8]; Ti(X) 和 Ti-Si 催化合成聚酯 的 b 值高于 Sb₂O₃,聚酯颜色偏黄主要是因为钛催 化剂提高正反应速率的同时,也加速了副反应热降 解和热氧降解,继而导致 PET 切片发黄。由 Ti-Si

催化剂制得的聚酯与由 Ti(X) 催化剂制得的聚酯切 片色度相差不大。

在聚酯黏度、端羧基含量达到标准要求的情况 下 综合考虑缩聚时间和色度 ,Ti-Si 催化剂缩聚后 期最佳反应温度控制在 281 ℃。

2.4 动力学研究

2.4.1 酯化动力学

由于 PTA 在 EG 中溶解度很小,因此,在酯化前 期非均相阶段(酯化率为90%左右),溶液始终是 PTA 的饱和溶液,反应速率常数与反应物浓度无关, 只与温度相关,本文研究只考虑酯化率在0~94% 附近,所以此过程的反应动力学按照零级反应方程 处理^[9],即:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = K \tag{1}$$

式中: x 为酯化率 ,%; t 为反应时间,min; K 为反应 速率常数 g/(mol•min)。

首先,通过酯化原料的投料比计算出理论的酯 化出水量 结合实际出水量求出酯化率。再通过曲 线拟合建立酯化率 *x* 与反应时间 *t* 的关系,拟合结 果如图 1 所示。

图 1 3种催化剂的酯化动力学

对 $x \le t$ 的曲线(见图 1(a)) 拟合式进行一阶 求导 得到一阶导数关系式 并代入反应时间 t 根据 式(1) 即可得到反应速率常数 K_{\circ} 然后 根据式(2) Arrhenius 公式 将 $\ln K \le 1/T$ 进行线性拟合 ,拟合结 果如图 1(b) 所示。根据 拟合曲线的 斜率(即 $-E_a/R$) ,计算得到零级反应的表观活化能 E_a ,结果 见表 4。

$$\ln K = \ln A - \frac{E_a}{RT}$$
(2)

式中: *A* 为阿累尼乌斯常数; *E*_a 为反应活化能, kJ/mol; *R* 为摩尔气体常数 J/(mol•K); *T* 为反应温 度 K。

表 4 3 种催化剂的反应活化能和酯化时间 Tab. 4 Activation energy and esterification time of three catalysts

催化剂名称	反应活化能 $E_a / (kJ \cdot mol^{-1})$	酯化时间/min
$\operatorname{Sb}_2\operatorname{O}_3$	50. 91	110
Ti(X)	49.81	90
Ti-Si	42.49	85

注: 缩聚温度为 281 ℃。

活化能表示化学反应发生所需要的最小能 量。由表4可知,Ti-Si催化剂合成聚酯的反应活 化能最低,Sb₂O₃的最高。其变化趋势与酯化时间 变化趋势一致,这是因为Sb₂O₃对酯化过程基本无 影响^[10],酯化过程中主要依靠原料 PTA 的羧基解 离 H⁺ 自催化活化 ,与 EG 进行亲核酯化反应; 而钛 系催化剂对酯化具有一定的催化作用。钛系催化 剂 中 Ti 首 先 与 乙 二 醇 形 成 金 属 醇 化 物 Ti(OCH₂CH₂OH)₄,然 后 金 属 醇 化 物 与 PTA 和 BHET 羰基氧原子发生配位反应,使羰基极化,从 而促进 EG 中的氧与羰基碳亲核发生酯化反应,由 分析可知 Ti-Si 催化剂对酯化反应的催化效果最 佳。图 2 示出酯化机制反应式。

图 2 钛系催化剂酯化机制

2.4.2 缩聚动力学

研究缩聚动力学时真空度控制在 100 Pa 以下, 且不考虑副反应的发生 缩聚反应满足 G. Rafler 提 出的金属离子催化生成 PET 属于二级反应^[11],所以 按照二级反应处理,即:

$$-\frac{\mathrm{d}C_{\mathrm{OH}}}{\mathrm{d}t} = KC_{\mathrm{OH}}^2 \tag{3}$$

式中: C_{0H}为羟基浓度 ,mol/L。

将式(3)两边同时对时间 t 进行积分 ,得到 下式:

$$\frac{1}{C_t} - \frac{1}{C_0} = Kt$$
 (4)

式中: C_t 为 t 时刻反应物羟基浓度 ,mol/L; C_0 为起始 反应物羟基浓度 ,mol/L。

在高真空缩聚阶段,每隔 30 min 取样 1 次,按 照 GB/T 14190—2008 测试 *t* 时刻试样的特性黏度, 再根据式(5) 计算其黏均分子量 *M*_v:

$$[\eta] = kM_{\rm v}^{\alpha} \tag{5}$$

式中: $[\eta]$ 为特性黏度 $dL/g; M_v$ 为黏均分子量; k为 Mark-houwink 常数, 取值 2.1 × 10⁻⁴; α 为 Markhouwink 常数, 取值 0.82。

然后 根据下式计算 t 时刻反应物羟基浓度:

$$C_{i} = \frac{1}{M_{y}} \tag{6}$$

将 *M*_v 与 *t* 进行线性拟合 ,得到 *M*_v 与时间 *t* 的 关系式:

$$M_{\rm v} = Kt + M_0 \tag{7}$$

对不同催化体系,在不同缩聚温度条件下 M_v 与 t进行拟合,拟合方程如表 5 所示。根据其斜率 可得到反应速率常数 K,然后将反应速率 K与反应 温度 T根据式(2) Arrhenius 公式进行线性拟合,即 可求得反应活化能 E_u ,其结果如表 6 所示。

表5 不同催化体系线性回归方程

Tab. 5Linear regression equation for

different catalysts

催化剂 名称	缩聚 温度/℃	线性回归 方程	反应速率常数 K/ (g•mol ⁻¹ •min ⁻¹)
	267	$M_v = 66.611 t + 3718.6$	66. 610
Sb_2O_3	273	$M_v = 70.339 t + 3542.2$	70. 339
	281	$M_v = 91.241 t + 1 860.4$	91.241
	267	$M_v = 70.364 t + 1525.4$	70.364
Ti(X)	273	$M_v = 74.376 t + 4179.6$	74.376
	281	$M_v = 92.43 t + 1 847.3$	92.430
	267	$M_v = 70.332 t + 617.02$	70. 332
Ti-Si	273	$M_v = 79.985 t + 4573.8$	79.985
	281	$M_v = 93.788 \ t + 3 \ 610.7$	93. 788

表 6 不同催化体系的表观活化能

Tab. 6 Activation energy of different catalysts

催化剂名称	线性回归方程	$E_a/(kJ \cdot mol^{-1})$
$\mathrm{Sb}_2\mathrm{O}_3$	$\ln K = -6\ 879.\ 1(\ 1/T)\ +16.\ 90$	57.19
Ti(X)	$\ln K = -5$ 947. 0(1/T) + 15. 24	49.44
Ti-Si	$\ln K = -6$ 147. 1(1/ <i>T</i>) + 15. 64	51.11

由表 5 可知,温度越高,反应速率常数越大,反 应速度越快。Ti-Si 催化剂在各个温度条件下的反 应速度均高于其他 2 种催化剂,表明该催化剂催化 活性较高。由表 6 可知,采用 Ti-Si 和 Ti(X) 催化剂 的反应活化能相似,且明显小于 Sb₂O₃,这与钛催化 剂活性高一致。

2.5 热性能及结晶性能

聚酯切片熔点和结晶度对后加工过程(如纺 丝、拉膜、注塑、吹瓶等)具有重要影响。图3示出 3种催化剂催化合成聚酯切片的 DSC 图谱 相关数 据列于表7。

图 3 3 种催化剂催化合成聚酯切片的 DSC 图谱 Fig. 3 DSC spectra of PET chips by three catalysts

Tab. 7	DSC	results	of PET	chips	bv	three	catalyst
	222		~ ~ ~ ~ ~		~,		

催化剂		结晶					
名称	$t_{\rm g}$	$t_{\rm cc}$	$t_{\rm m}$	$t_{\rm hm}$	Δt _{过热}	Δt_{ijk}	度/%
$\mathrm{Sb}_2\mathrm{O}_3$	74.4	128.3	252.9	222.1	53.9	30.8	29.5
Ti(X)	76.6	138.0	255.6	208.6	61.4	47.0	29.6
Ti-Si	74.9	138.1	253.4	217.4	63.2	36.0	30.1

注: 缩聚温度为 281 ℃。t。为玻璃化转变温度 t。为冷结晶温 度 $t_{\rm m}$ 为熔点 $t_{\rm hm}$ 为热结晶温度 $\Delta t_{\rm tith}$ 为过热度 $\Delta t_{\rm tith}$ 为过冷度。

由表 7 可知 3 种聚酯切片的玻璃化转变温 度 (t_a) 相近。Ti(X)和Ti-Si 催化剂冷结晶温度 (t_a) 更高一些 这是因为与 Sb(Ⅲ) 离子相比 'Ti(Ⅳ) 离子 荷径比(离子电荷数与离子半径的比值)大,与羟乙 酯基配位的能力强 形成的络合物稳定 限制了大分 子链段的运动能力,不利于大分子链段向晶格 扩散^[12]。

聚酯切片过热度和过冷度越小,结晶越容易。 从表7可看出、Sb₂O₃催化剂合成聚酯切片的过冷 和过热程度都较小 所以结晶更容易 而 3 种聚酯切 片的结晶度相差很小。

2.6 力学性能

表 8 示出力学性能测试结果。3 种催化剂合成 的聚酯切片的应力-应变曲线均符合高聚物典型应 力-应变曲线 断裂伸长率均较高 ,呈韧性断裂。

表 8 3 种催化剂体系催化合成聚酯切片的力学性能

Tab. 8 Mechanical properties of different chips

by three catalysts							
催化剂 名称	拉伸强度/ MPa	弹性模量/ MPa	断裂 伸长率/%				
$\mathrm{Sb}_2\mathrm{O}_3$	56.2	939. 2	309				
Ti(X)	57.3	961.5	348				
Ti-Si	57.1	922.1	345				

注: 缩聚温度为 281 ℃。

从表 8 可看出 ,Ti(X) 和 Ti-Si 催化剂催化合成 样品的拉伸强度略高于锑系催化剂 ,且断裂伸长率 明显提高。钛系催化剂催化合成样品的力学性能优 于锑系催化剂 这是因为钛系催化剂结晶速度慢 在 拉伸过程中 结晶速度慢的聚合物更有利于大分子 轴向有序排列取向,力学性能提高^[13]。

结 3 论

1) 制备出系列新型 Ti-Si 催化剂 其中磷质量分 数为 2. 20% 的 Ti-Si 催化剂催化效果最佳,其最佳 用量为19 μg/g。

2) 通过与 Sb₂O₃ 和市售 Ti(X) 催化剂的酯化动 力学和缩聚动力学比较发现,Ti-Si催化剂具有较高 的催化活性 降低了酯化、缩聚反应的活化能 提高

了反应速度。

3) 采用 Ti-Si 催化剂合成的聚酯切片的质量指 标基本符合纤维级要求 与锑系催化剂相比 在相同 合成条件下,二甘醇质量分数降低,亮度提高,切片 的热性能较好,结晶速度慢,力学性能较好,但b值 偏高。 FZXB

参考文献:

- [1] 马敬红,龚静华,杨曙光,等. 分子内阻燃 PET 纤维 的结构性能[J]. 纺织学报 2012,33(6):107-110. MA Jinghong , GONG Jinghua , YANG Shuguang , et al. Structures and properties of intramolecular flameretardant PET fibers [J]. Journal of Textile Research, 2012,33(6): 107-110.
- [2] PUTZIG D E , MCBRIDE E F , DO H Q , et al. Titanium containing catalyst composition and processes therefor and therewith: 6255441A [P]. 2002 - 02 - 06.
- [3] SCHEIRS J, LONG T E. Modern Polyesters [M]. USA: Hobopen John Wiley & Sons , 2003:62
- [4] 李光. 高分子材料加工工艺学 [M]. 北京: 中国纺织 出版社,2010:17. LI Guang. Processing Technology of Polymer Materials [M]. Beijing: China Textile & Apparel Press, 2010:17.
- [5] 顾晓华,牛淑青,刘仁秋. Ti 系催化剂对纤维级 PET 切片质量影响的研究 [J]. 合成纤维, 2009, 38(6): 33 - 35.

GU Xiaohua , NIU Shuqing , LIU Renqiu. Study on the impact of Ti catalyst on quality of fiber grade PET chips [J]. Synthetic Fiber in China, 2009, 38(6): 33 - 35.

[6] 姜伟. 影响 PET 端羧基的因素及控制方法 [J]. 科技 致富向导 2014(14):78. JIANG Wei. Factors affecting PET terminal carboxyl

group and control method [J]. Guide of Sci-tech Magazine , 2014(14):78.

[7] 陆小勇, 雷智慧, 杨世杰. 聚酯生产中二甘醇含量偏 高成因分析与对策[J]. 合成纤维工业, 2003, 26(4):45-46. LU Xiaoyong , LEI Zhihui , YANG Shijie. Analysis and

countermeasures to high content of diethylene glycol during polyester production [J]. China Synthetic Fiber Industry , 2003 , 26(4): 45 - 46.

- [8] FINELLI L, LORENZETTI C, MESSORI M, et al. Comparison between titanium tetrabutoxide and a new commercial titanium dioxide based catalyst used for the synthesis of poly(ethylene terephthalate) [J]. Journal of Applied Polymer Science, 2004, 92(3): 1887-1892.
- [9] 黄关葆. 线型饱和聚酯与共聚酯的合成及性能研 究[D]. 成都:四川大学, 2003: 44-46. HUANG Guanbao. Studies on the synthesis and properties of linear saturated polyesters and copoly-

esters [D]. Chengdu: Sichuan University, 2003: 44 – 46.

- [10] 赵玲,戴迎春,沈瀛坪,等.聚酯工业生产中催化剂的作用[J].聚酯工业,1999(4):12-15.
 ZHAO Ling, DAI Yingchun, SHEN Yingping, et al. Effect of catalyst on PET industrial process[J]. Polyester Industry, 1999(4):12-15.
- [11] 李卫伟. 钛系催化剂对 PET 缩聚反应动力学的影响[J]. 合成纤维工业,2013,36(6):31-32.
 LI Weiwei. Effect of titanium catalyst on PET polycondensation kinetics [J]. China Synthetic Fiber Industry,2013,36(6):31-32.
- [12] 周美进,戴钧明,王玉合,等. 锑钛复合催化剂半消

光聚酯等温结晶性能研究[J]. 合成纤维工业, 2016,39(1):23-26.

ZHOU Meijin , DAI Junming , WANG Yuhe , et al. Isothermal crystallization performance of semidull polyester chip by using antimony/titanium composite catalyst [J]. China Synthetic Fiber Industry , 2016 , 39(1):23-26.

[13] 李艳玲,王朝生,陈向玲,等. 钛锑复合催化剂聚酯 切片的结晶性及可纺性[J]. 合成纤维工业,2010, 33(5):31-33.

LI Yanling , WANG Chaosheng , CHEN Xiangling , et al. Crystallinity and spinnability of polyester chips with titanium-antimony composite catalyst [J]. China Synthetic Fiber Industry , 2010 , 33(5):31 – 33.