DOI: 10. 13475/j. fzxb. 20171009608

聚醚砜非织造布复合膜的空气过滤性能

朱金铭,钱建华,曹晨,曹原

(浙江理工大学 材料与纺织学院,浙江 杭州 310018)

摘 要 为得到一种性能较好的检测空气质量的过滤膜 采用复合的方式将聚醚砜铸膜液涂覆在熔喷非织造布上 成膜。研究了聚醚砜树脂(PES) 质量分数、添加剂二氧化钛、成膜条件和凝固浴温度等对膜结构及性能的影响。结 果表明 在致孔剂 PVP 固定为 10% 时 随着 PES 质量分数由 6% 增加到 20% 复合膜的透气量由 119.65 L/(m²·s) 下降到 12.04 L/(m²·s) 过滤效率由 67.06% 提高到 92.38%,断裂强力先增大后减小;随着添加剂二氧化钛浓度增加, PES 复合膜的透气量先增加后降低 过滤效率由 82.73% 提高到 87.10% 断裂强力增大;随着凝固浴温度升高,透 气量由 13.62 L/(m²·s) 上升到 34.22 L/(m²·s) 过滤效率由 90.62% 降低到 83.47%,断裂强力显著上升;随着 PES 复合膜厚度增加 透气量由 34.5 L/(m²·s) 下降到 28.5 L/(m²·s) 过滤效率提升 断裂强力增大。 关键词 聚醚砜;非织造过滤材料;复合膜;空气过滤性能 中图分类号: TQ 028.8 文献标志码: A

Air filtration performance of polyether sulfone nonwoven composite membranes

ZHU Jinming , QIAN Jianhua , CAO Chen , CAO Yuan

(College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China)

Abstract In order to obtain membranes with better performance for air quality detection , a polyether sulfone(PES) membrane was coated on the fusible nonwoven fabric by combining. The influence of PES mass fraction , additive TiO_2 , coagulation bath temperature , and film thickness on the structure and properties the membranes was investigated. With the mass fraction of PVP fixed at 10% and PES increased from 6% to 20% , the permeability of the composite membranes reduces from 119.65 L/($\text{m}^2 \cdot \text{s}$) to 12.04 L/($\text{m}^2 \cdot \text{s}$) , the filtration efficiency increases from 67.06% to 92.38% , and the breaking strength increases first and then decreases . With the increase of the dosage of TiO₂ as additive , the permeability of the composite membranes increases first and then decreases , filtration efficiency rises from 82.73% to 87.10% and the breaking strength increases. As the coagulation bath temperature increases , the permeability of the composite membrane changes from 13.62 L/($\text{m}^2 \cdot \text{s}$) to 34.22 L/($\text{m}^2 \cdot \text{s}$) , filtration efficiency to 83.47% and the breaking strength increases significantly. With the composite membrane thickess increases , the permeability changes from 34.5 L/($\text{m}^2 \cdot \text{s}$) to 28.5 L/($\text{m}^2 \cdot \text{s}$) , the filtration efficiency increases and the composite membrane improves. **Keywords** polyether sulfone; nonwoven filter material; composite membrane; air filter performance

非织造过滤材料由于其可增加空气净化效率, 减少能耗成本,延长使用寿命,易与其他滤料复合和 力学性能好等优势,近年来已经在各行各业得到广 泛的应用。在环保产业快速增长的背景下,非织造 环保过滤材料发展前景良好。20世纪50年代,非 制造工业在国际上开始迅速发展,非织造滤料在高 效空气过滤的应用更为广泛;我国的非织造过滤材 料起步于 20 世纪 60 年代末 70 年代初,发展速度超 过世界平均速度的 3% ~5%,潜在市场较大。在所 有的非织造工艺中,溶喷法具有工艺流程短、成本低

基金项目:浙江理工大学纺织科学与工程优秀青年人才基金项目(2013YXQN09)

收稿日期: 2017 - 10 - 25 修回日期: 2018 - 04 - 02

第一作者简介:朱金铭(1993—),女,硕士生。主要研究方向为新型膜材料。

通信作者: 钱建华 E-mail: qianjianhua@ zstu. edu. cn。

廉、来源广泛等优点,是一项具有发展前景的新技 术,但单纯使用熔喷非织造布作为空气过滤材料,其 过滤效率较难提高,特别是针对 2.5 μm 以下的颗 粒。而超滤膜材料能够截留 10~100 nm 之间的物 质,达到分子级别。20 世纪 90 年代中期研制成功 的薄膜复合滤料,是将超滤膜材料 PTFE 覆盖在机 织布、非织造布或玻璃纤维滤料上,它具有过滤效率 高、阻力低(比传统滤料低 30%~40%)、使用寿命 长(可达传统滤料的 2~5 倍)、耐高温的优点,在除 尘净化、空调过滤行业得到日益广泛的应用。

聚醚砜树脂(PES) 是应用较广的超滤膜材料, 但近年来其主要用于水过滤,而作为空气过滤方面 的研究甚少。考虑到 PES 化学稳定性好、强度高、 pH 值范围为1~13,最高使用温度为120℃,抗氧 化性和抗氯性能十分优良等优势^[1],本文通过用平 板膜的制作方式,将聚醚砜膜涂覆在熔喷非织造布 上,使这种复合膜透气性好且过滤精密度高,可将其 用于精密过滤仪器进行空气颗粒检测。添加一定比 例的二氧化钛(TiO₂)在铸膜液中,促使膜孔分布的 均匀度得到提升,既可提供极高的过滤效率,又可利 用纳米粒子的光催化特性将室内有机臭味在紫外光 照射下分解除去。

1 实验部分

1.1 实验材料

聚醚砜树脂(PES,化学纯),美国苏威公司;聚 乙烯吡咯烷酮(PVP,化学纯),杭州蓝博工业公司; N_N-二甲基乙酰胺(DMAc,化学纯),广州市德银化 工有限公司;二氧化钛(TiO₂,分析纯),上海江户钛 白化工制品有限公司;熔喷非织造布(自制,原料为 聚丙烯 3.33×10⁻³g/cm²,厚度为0.25 mm)。

1.2 实验设备

HLKGM3125D 型台式涂膜机,HH-ZK₂型电动 搅拌机 SHANGPING FA 2004 型电子天平,YG461E 型透气性测试仪,SX-L1053 型滤料试验台,JSM-5610LV 型扫描电子显微镜,3H-2000PSI 型孔径分 析仪,1500-AE 型气孔计孔隙仪,YG026H-100 型电 子织物强力机。

1.3 实验方法

配制不同比例的 PES 铸膜液至三口烧瓶里,放入恒温水浴(80℃)中,在搅拌速度恒定为 110 r/min时进行搅拌,直至颗粒充分溶解,真空脱 泡后静置待用。调整刮膜的厚度为90~95 nm,刮 膜速度为3.00 mm/s 将26 cm×45 cm 规格的非织 造布平铺黏在玻璃板上,均匀倾倒铸膜液开始刮膜。 刮膜完成后,迅速将玻璃板放入100 ℃沸水(第1 凝 固浴)中浸没10 s,然后再将玻璃板放在室温水凝固 浴(第2 凝固浴)中进一步脱溶剂,进行溶剂与非溶 剂的扩散^[2]。在第2 凝固浴中浸没20 min 后,再放 入烘箱中,调整温度为34~40 ℃进行烘干,直到膜 干燥,然后将聚醚砜非织造布复合膜从玻璃板上取 下,做好标记待用。

1.4 膜性能测试

1.4.1 透气性测试

按要求准备好试样并剪切成面积为100 cm² 样 品放置好后,将压力差设置为500 Pa,试样面积为 20 cm²,通过压力敏感器测定透过气体量^[3]。

1.4.2 过滤性能测试

将清洁、平整且面积大于 100 cm² 的样品放入 指定区域 ,铺平铺展 ,覆盖整个端口 ,用 SX-L1053 型 滤料试验台以 0.3 μm 气化的聚苯乙烯粒子(PSL) 溶胶在 5.33 cm/s 滤速下测试膜的过滤效率 ,在不 同位置连续测 3 次取平均值。

1.4.3 孔径及泡点测试

将试样裁剪成直径为 2.0 cm 的圆片 放入玻璃 皿中滴加 Silwick 润湿剂充分使膜润湿。用气孔计 孔隙仪测量试样材料的孔径大小和泡点 ,得到平均 孔径大小 ,用于空气过滤的分析^[4]。

1.4.4 断裂强力和伸长率测试

将试样剪成 25 cm × 25 cm 的样条 在 YG026H-100 型电子织物强力机上参照实验方法调整试样夹 持距离、拉伸速度及回复速度 ,夹持试样开始测试。 1.4.5 形貌观察

选取所测样品表面平滑且均匀的 1 cm × 6 cm 长条放在液氮里冷冻脆断,剪切成 2 mm × 2 mm 的 小方片后贴在导电胶于制样台侧面,完成后将其在 灯光下干燥,再对样品表面镀金。用扫描电子显微 镜观察膜表面及截面形貌。

2 结果与讨论

2.1 PES 对复合膜空气过滤性能的影响

2.1.1 PES 质量分数对复合膜空气过滤效率的影响

在 PVP 粉末质量分数为 10% 不添加其他添加 剂的条件下,采用不同质量分数的 PES 制备平板复 合膜,其对透气量和过滤效率的影响结果如图 1 所示。

从图 1 可看出: PES 质量分数在 4% ~6% 之间 时,透气量急剧下降,下降幅度达到 430 L/(m²•s), 过滤效率从 25.90% 直接提高到 67.06%;随着 PES 质量分数的增大,透气量逐渐下降,过滤效率逐渐提

Fig. 1 Filtration efficiency and air permeability of PES membranes with different mass contents

高。当 PES 质量分数低于 6% 时,铸膜液由于黏度 太低,达不到成膜的临界黏度,致使铸膜液只是单纯 的浇灌在非织造布上,并快速渗入到非织布较大的 孔隙中,形成一种交织的结构^[5],即达不到复合膜 本身的过滤效率。当 PES 质量分数大于 6% 时,随 着质量分数的增加,铸膜液黏度增大,溶剂和非溶剂 之间的交换速率降低,导致膜表面的孔径降低,形成 致密孔,膜内指状孔的连贯性有所下降^[6];但膜孔 径的降低,使得膜对 0.3 μm 的 PSL 粒子的截留效 率逐步增大,所以过滤效率会提高。

2.1.2 PES 质量分数对复合膜孔径的影响

在 PVP 粉末质量分数为 10% 不加其他添加剂 的条件下 研究了 PES 质量分数对 PES 非织造布复 合膜孔径的影响 结果如图 2 所示。

由图 2 可知,当 PES 质量分数由 4% 增到 9% 时,铸膜液黏度升高,相分离过程受阻,平均孔径变 小,由 14.14 μm 下降到 2.53 μm。这可以解释复合 膜在 PES 质量分数为 6% 时透气量的突然降低和过 滤效率的大幅提升。随着 PES 质量分数的增大,膜 的最大孔径增大,说明 PES 质量分数对膜孔增大有 一定促进作用。当 PES 质量分数为 9% 时,最大孔 径达到最大为 41.36 μm,随着 PES 质量分数的增 大,最大孔径出现下降,原因在于铸膜液黏度升高, 使溶剂和非溶剂之间的交换速率降低,导致膜内指 状孔连贯性有所下降,从而抑制了膜中大孔的形成; 但随着 PES 质量分数继续大到 20%,平均孔径呈现 缓慢下降的趋势,说明此时影响透气量的原因是支 撑层的连通程度和孔隙率大小^[7]。

2.1.3 PES 质量分数对复合膜力学性能的影响

图 3 示出 PES 质量分数对复合膜力学性能的 影响。基底材料熔喷非织造布的断裂强力为 14.1 N ,断裂伸长率为 13.0% ,发生断裂时熔喷非 织造布整体被拉坏 ,断口参差不齐。随着 PES 质量 分数的增大 ,PES 复合膜的断裂强力先增大后减小 , 在 PES 质量分数为 13% 时断裂强力最大为 23.8 N , 原因是此时铸膜液与熔喷非织造布基底产生的渗透 作用最强 ,与纤维结合最紧密 ,使得此时的断裂强力 最大; 断裂伸长率逐步减小 ,且断口比较平整 ,说明 复合膜材料的力学性能较为均匀 ,尺寸稳定性显著 提高。

和断裂伸长率

Fig. 3 Breaking strength and elongation of PES membrane with different mass contents

2.1.4 PES 质量分数对 PES 膜微观形貌的影响

在 PVP 粉末质量分数为 10% 时 采用不同质量 分数的 PES 制备复合膜 其形貌结果如图 4 所示。

由图 4 可知 非织造布 PES 复合膜表面的孔大 都在纤维与纤维的交界处及纤维边界生成较大的 孔。原因是纤维之间的互相交错 ,使得铸膜液在进 行溶剂和非溶剂扩散速度的不同 ,导致大孔出现。 但是在质量分数小的时候 ,铸膜液不具备成膜的最 低的黏度 ,大部分铸膜液渗入到非织造布中 ,表面成 膜少 ,中层会有许多铸膜液形成的微小膜 ,这样就会 造成透气量增大以及过滤效率降低; 但随着固含量 增加 ,铸膜液黏度增大 ,会在非织造布上形成一层薄 薄的膜 ,可以在图 4 中表层明显看到膜下面有指状 的支撑层 ,因此过滤效率会增加 ,但透气量降低。

(c) 10%PES表面(×1 000)

图 4 不同质量分数 PES 复合膜的电镜照片

Fig. 4 SEM images of PES membranes with different mass fractions of PES. (a) Surface morphology of 6% PES(×1 000);

(b) Section morphology of 6% PES(×200); (c) Surface morphology of 10% PES(×1 000); (d) Section morphology of 10% PES(×350)

2.2 TiO₂ 对复合膜空气过滤性能的影响 2.2.1 TiO₂ 质量分数对膜空气过滤效率的影响

在 PES 质量分数为 13% PVP 质量分数为 10% 的条件下 添加不同质量分数的 TiO, 制备 PES 非织 造布复合膜 测试其对空气过滤效率和透气量的影 响 结果如图 5 所示。

Fig. 5 Filtration efficiencies and permeabilities of PES membranes added with different mass contents of TiO2

由图 5 可知,随着 TiO₂ 添加量的增大,过滤效 率的趋势是上升的 透气量的总体趋势是先升后降。 当 TiO₂ 质量分数为 3% 时 ,PES 复合膜的过滤效率 稍有降低,原因是 TiO,本身具有很好的分散性,在 铸膜液中加入 TiO₂ 粉末后,能够有效地打破铸膜液 中的团聚物,使铸膜液变得更均匀,从而使 PES 复 合膜表面孔径分布更为均匀,但此时铸膜液浓度不 高 最大孔径继续增大 使膜的过滤效率稍有降低。 添加剂 TiO₂ 的继续加入提升了铸膜液的黏度 ,造成

溶剂和非溶剂扩散受阻,形成小孔和闭塞的孔^[8], 使得复合膜的过滤效率增大 透气量降低。

2.2.2 TiO, 质量分数对膜孔径的影响

在 PES 质量分数为 13% PVP 质量分数为 10% 的条件下 测试不同质量分数的 TiO, 对 PES 复合膜 孔径的影响 结果如图6所示。

由图 6 可知,TiO,质量分数由 0 逐渐增大到 5% 过程中,平均孔径逐步下降,最大孔径在30~ 45 μm之间缓慢增大 总体趋势不十分明显 这些孔 是出现在非织造布纤维周围的豆角状连续孔状 物^[9]。当 TiO₂ 质量分数从 3% 增大到 4% 时,膜的 最大孔径突然减小 原因是 TiO2 在铸膜液中的含量 增加到一定程度后,其在铸膜液中的溶解状况变差, 未溶解的 TiO₂ 在膜中产生堵孔作用,使得孔径变 小 过滤效率有所提升。平均孔径总体趋势逐渐减 小 说明 TiO, 质量分数增大对孔隙率的提升是有帮 助的 使得膜中微细孔的数量增多 直观表现是透气 量降低 过滤效率提高。

2.2.3 TiO₂ 质量分数对膜力学性能的影响

图 7 示出不同质量分数 TiO, 的 PES 膜的断裂 强力和断裂伸长率。可看出: 当 TiO_2 质量分数为 0 时,PES复合膜的断裂强力最小,为23.8 N;随着 TiO, 质量分数的增大 ,PES 复合膜的断裂强力不断 上升,伸长率也呈上升趋势,说明 PES 复合膜的强 力与 TiO_2 的质量分数呈正相关关系; 当 TiO_2 质量 分数为4%时,PES复合膜的断裂强力最大,伸长率 最高 原因是 TiO₂ 的加入提高了膜的表面张力,增 大了膜的比表面积,从而使 PES 复合膜强度提高, 伸长率增大。

2.2.4 TiO₂ 质量分数对膜形貌的影响

在 PES 质量分数为 13% , PVP 质量分数为 10% 的条件下,通过电镜观察不同质量分数 TiO_2 对 PES 复合膜表面和截面形貌的影响 如图 8 所示。

图 7 不同质量分数 TiO₂ 复合膜的断裂强力和断裂伸长率

Fig. 7 Breaking strength and elongation of PES membrane added by different mass contents of TiO₂

Fig. 8 SEM images of PES membranes with different contents of TiO_2 . (a) Surface morphology without $TiO_2(\times 1\ 000)$;

(d) Section morphology without $TiO_2(\times 350)$;

(c) Surface morphology with 1% $\, {\rm TiO}_2(\ \times 1\ 000)$;

(d) Section morphology with 1% $TiO_2(\times 350)$

加入 TiO₂ 的铸膜液制备的 PES 复合膜成孔率 会增大,而且成的孔一般都会以豆角状出现在纤维 周围,如图 8 所示。这是因为 TiO₂ 的分散性在铸膜 液中使得成孔更加均匀,但是在截面形貌上没有太 大的差别。

2.3 凝固浴对复合膜空气过滤性能的影响

2.3.1 凝固浴温度对复合膜空气过滤效率的影响

在不同凝固浴温度下制备 PES 非织造布复合膜,并测试其对过滤效率和透气量的影响,结果如图9所示。

由图 9 可知: 随着凝固浴的温度由 20 ℃ 升高到 100 ℃ 透气量从 13.62 L/(m² •s) 提高到 34.22 L/(m² •s), 增加了将近 3 倍; 但过滤效率由 90.62% 下降到 83.47%,下降了 7.8%。升高凝固浴的温度加快了

铸膜液中各组分的相分离,致使 PES 膜孔径、孔隙 率和通透性增加。温度升高降低了聚合物中铸膜液 的饱和度,凝固浴中非溶剂的温度升高致使非溶剂 和溶剂的双向扩散速度增加,降低了铸膜液层的脱 混速度^[10]。

2.3.2 凝固浴温度对复合膜孔径的影响

凝固浴温度对非织造布复合膜孔径的影响如 图 10 所示。可看出 随着凝固浴温度的升高 ,复合膜 的平均孔径逐渐增大 ,而最大孔径在 60 ℃时降到最 小 ,而后增大。

2.3.3 凝固浴温度对复合膜力学性能的影响

虽然滤料的力学性能对过滤效率影响不大,但 在一定程度上影响着滤料的加工性能和使用寿命, 良好的拉伸强力在过滤风速较大时不会发生变形或 破坏,间接地增强了滤料的过滤性能。图11示出不 同凝固浴温度 PES 膜的断裂强力和断裂伸长率。 可以看出 随着凝固浴温度升高,PES 复合膜的强力 和伸长率都呈现显著上升的趋势,说明凝固浴温度 可使 PES 复合膜的力学性能有所提升。

2.3.4 凝固浴温度对复合膜形貌的影响 在不同凝固浴温度条件下制备 PES 复合膜,通

过扫描电镜观察膜的表面和截面形貌,结果如图12 所示。

temperatures. (a) Surface morphology(×1 000);

- (b) Section morphology of 20 $^{\circ}$ C (×350);
- (c) Surface morphology of 100 $^{\circ}C(\times 1000)$;
- (d) Section morphology of 100 $^{\circ}$ C(\times 350)

由孔径测试可知 随着凝固溶温度上升 ,膜平均 孔径增大约4倍,透气量上升,温度为100℃的膜的 孔径数密度明显增多。从截面形貌上看,上层是膜 和非织造布交织在一起的复合膜,下层基本就是非 织造布,由于非织造布的透气性很好,所以透气量的 控制主要在于上层复合膜的控制,同样过滤效率也 主要由上层控制^[11]。

2.4 PES 复合膜厚度对空气过滤性能的影响

在 PES 质量分数为 13%, PVP 质量分数为 10% 的条件下,测试不同 PES 复合膜厚度对过滤效率和 透气量的影响,结果如图 13 所示。

Fig. 13 Filtration efficiencies and permeabilities of PES membranes with different thicknesses

由图 13 可见,随着膜厚度的增加,透气量由 初始的34.5 L/(m²•s)下降到 28.5 L/(m²•s),降 低了 20%。过滤效率随着膜厚度的增加而提高, 原因是:虽然表层的溶剂和非溶剂交换速度快,但 随着膜厚度的增加,溶剂和非溶剂的交换速度降 低,甚至最内层都没有扩散完成,造成孔的通透性 降低,所以整体趋势是透气量降低而过滤效率 提高^[12]。

图 14 示出不同厚度 PES 膜的孔径。最大孔径 基本保持在 30 ~45 μm 之间,平均孔径随膜厚度的 变化没有显现出相应的规律。

with different thicknesses

不同厚度 PES 膜的断裂强力和断裂伸长率如 图 15 所示。可看出,PES 复合膜的断裂强力与膜厚 度呈正相关关系,而断裂伸长率则呈现先升后降的 趋势。这是因为初始时膜厚度太小,拉伸时主要是 底层的非织造布在受力,表现出非织造布本身的脆 性特性,随着膜厚度的增加,铸膜液越多地渗入到非 织造布中,拉伸外力逐渐转移到内部,为内部的形变 提供了缓冲的空间,但这种空间会随着膜厚度和填 充密度的继续增大而逐渐减小,使得膜的断裂伸长 率出现先增后减的变化。

Fig. 15 Breaking strength and elongation of PES membranes with different thicknesses

2.5 与同领域材料性能的对比

为将本文实验所制得的聚醚砜非织造布复合膜 与同领域空气过滤材料在同一测试条件下进行性能 的对比,选取普通非织造纤维类空气过滤材料和聚 四氟乙烯(PTFE)薄膜进行测试,结果如表1所示。

表1 空气过滤材料的性能

Tab. 1 Performance of air filtration material	Tab. 1	Performance	of air	filtration	materials
---	--------	-------------	--------	------------	-----------

材料 名称	平均 孔径/ ^{μm}	透气量/ (L•(m ² •s) ⁻¹)	过滤 效率/ %	断裂 强力/ N	断裂 伸长率/ %
PES 非织造布 复合膜	1~4	28 ~ 38	82 ~ 90	23.8	11.5
熔喷非织造布	47.6	505.8	< 30	14.4	13.0
PTFE 膜	0.3~10	34	>99	1.3~2.3	>120

由表1可看出: PES 非织造布复合膜的透气量 与 PTFE 膜接近,而远小于普通熔喷非织造布滤料; 对 0.3 μm 的微粒过滤效率稍低于 PTFE 膜,但约是 熔喷非织造布的3倍。PES 非织造布复合膜的断裂 强力最大,断裂伸长率最小,说明其寿命最长,膜的 尺寸稳定性最好。本文实验所制得的 PES 非织造 布复合膜在保持高过滤效率的条件下,提高了膜的 使用寿命和尺寸稳定性。

3 结 论

1) 在致孔剂 PVP 质量分数固定为 10% 的条件 下,当 PES 质量分数大于 6% 之后,随着 PES 质量 分数的增大,透气量逐渐下降,过滤效率逐渐增大, 断裂强力先增大后减小,膜尺寸稳定性显著提高。 最大孔径总体呈增大趋势,平均孔径急剧下降后再 平稳。质量分数低的时候,铸膜液不具备成膜的最 低的黏度,大部分铸膜液渗入到非织造布中,表面成 膜少,中层会有许多铸膜液形成的微小膜。

2) 随着 TiO₂ 添加量的增大 过滤效率呈上升趋

势 透气量的总体趋势是先升后降。随着 TiO₂ 质量 分数逐渐增大,复合膜的最大孔径在 30~45 µm 之 间,总体变化趋势不十分明显;平均孔径却逐渐减 小。TiO₂的加入使膜的断裂强力增大,同时断裂伸 长率在上升。

3) 凝固浴温度升高,复合膜的透气量明显提高,由13.62 L/(m² • s)提高到34.22 L/(m² • s),提高了2.5倍;过滤效率由90.62%下降到83.47%; 复合膜的平均孔径逐渐增大,而最大孔径在60℃时降到最小,而后增大;其断裂强力和断裂伸长率也在增大。

4) PES 复合膜厚度增加,透气量逐步减小,过滤 效率总体逐步提高;膜厚度越厚,断裂强力越高,断 裂伸长率先增后减。

参考文献:

- [1] 陈立新,沈新元.相转化法的湿法成膜机理[J]. 膜 科学与技术,1997,17(3):1-6.
 CHEN Lixin, SHEN Xinyuan. A review on a mechanism for the morphological formation in wet phase-inversion membrane [J]. Membrane Science and Technology, 1997,17(3):1-6.
- [2] HAN M J. Effect of propionic acid in the casting solution on the characteristics of phase inversion polysulfone membranes [J]. Desalination, 1999 (121): 31-36.
- [3] 邓捷,吴立峰. 钛白粉应用手册[M]. 北京:化学工 业出版社,2005:1-20.
 DENG Jie, WU Lifeng. Titanium Pigment Application Manual [M]. Bejing: Chemical Industry Press,2005: 1-20.
- [4] 孙俊芬,王庆瑞. 影响聚醚砜超滤膜性能的因素[J]. 水处理技术,2003 29(6):323-326.
 SUN Junfen, WANG Qingrui. The factors affecting the properties of PES membrane [J]. Water Treatment Technology,2003 29(6):323-326.
- [5] 王志英,李建林,吴晓君,等.双凝固浴法制备高度 疏水 PVDF 杂化微孔膜[J].天津工业大学学报, 2013,32(3):8-13.
 WANG Zhiying, LI Jianlin, WU Xiaojun, et al. Fabrication of a high hydrophobic PVDF hybridized microporous membrane by dual-bath coagulation [J]. Journal of Tianjin University of Technology, 2013, 32(3):8-13.
- [6] 何涛,江成璋. 聚醚砜微孔膜制备中非溶剂添加剂作用研究[J]. 膜科学与技术,1998,18(3):43-48.
 HE Tao, JIANG Chengzhang. Effects of nonsolvent additives on performance of poly (ether sulfone) microporous membranes [J]. Membrane Science and Technology,1998,18(3):43-48.
- [7] 王庚, 张卫东, 高坚, 等. 膜的微观结构对空气过滤

的影响[J]. 环境保护,2003(11):46-48.

WANG Geng, ZHANG Weidong, GAO Jian, et al. Influence of micro-structure of membrane filter material in air-filtration process [J]. Environmental Protection, 2003(11):46-48.

- [8] KAIYA Y. Analysis of organic matter causing membrane fouling in drinking water treatment [J]. Water Science and Technology , 2000 , 41 (10 - 11) , 59 - 67.
- [9] CROZES G. Effect of adsorption of organic matter on fouling of ultrafiltration membrane [J]. Jour Membrane Science, 1993, 84: 61 – 77.
- [10] 耿新颜. PM2.5 的空气过滤材料解决方案[J]. 暖通 空调,2013(9):41-44.
- (上接第49页)

YU Jing ,JIANG Gaoming ,DONG Zhijia. Edge design on multi-bar Raschel Lace [J]. Journal of Textile Research , 2011 32(8):53-55.

- [11] 辛国红 蔣高明,缪旭红. 多梳拉舍尔花边的过渡设计[J]. 纺织学报,2009,30(1):53-57.
 XIN Guohong, JIANG Gaoming, MIAO Xuhong. Transitional design of multi-bar Raschel lace [J]. Journal of Textile Research 2009,30(1):53-57.
- [12] 何甜,吴志明. 多梳拉舍尔定位蕾丝面料的边部设计[J]. 纺织学报,2016 37(3):55-59.
 HE Tian, WU Zhiming. Edge design on multi-bar Raschel positioning lace fabric [J]. Journal of Textile Research, 2016, 37(3):55-59.
- [13] KARL M. Jacquard raschel machine for the production for the curtains and table cloths [J]. Ketten Wirk Praxis , 2008 (3): 5 - 10.

GENG Xinyan. PM2. 5 Air filter material solutions [J]. Journal of HV & AC, 2013(9):41-44.

- [11] 刘来红,朱玲英. 高效空气过滤材料的发展与特点[J]. 产业用纺织品,2005,23(4):6-8.
 LIU Laihong, ZHU Lingying. Development and characteristic of high efficiency air filter media [J].
 Industrial Textiles,2005,23(4):6-8.
- [12] 王倩,王铎,娄红瑞,等.新型聚醚砜超滤膜的制备 与表征[J]. 膜科学与技术,2008,28(6):9-13.
 WANG Qian, WANG Duo, LOU Hongrui, et al. Preparation and characterization of novel polyether sulphone ultrafiltration membranes [J]. Membrane Science and Technology,2008,28(6):9-13.
- [14] 蒋高明.现代经编工艺与设备[M].北京:中国纺织出版社 2001:272-329.

JIANG Gaoming. Technology and Equipment of Warp Knitted [M]. Beijing: China Textile & Apparel Press, 2001:272-329.

- [15] 徐颖 蒋高明. 多梳拉舍尔花边的花型[J]. 上海纺织 科技 2006 34(12):45-47.
 XU Ying, JIANG Gaoming. Pattern design of multi-bar Rascher lace [J]. Shanghai Textile Science & Technology, 2006 34(12):45-47.
- [16] 何甜 吴志明. 连衣裙用多梳拉舍尔定位蕾丝面料的 纹样设计[J]. 纺织学报 2016 37(8):114-118.
 HE Tian, WU Zhiming. Pattern design of multi-bar Raschel positioning lace fabric for dress [J]. Journal of Textile Research, 2016 37(8):114-118.