研究与技术

DOI: 10.3969/j.issn.1001-7003.2018.01.005

扁平截面锦纶 6FDY 生产工艺

刘冰灵12,金志学2,薛伟仁2,韦飞2

(1. 上海交通大学 化学化工学院, 上海 200240; 2. 福建锦江科技有限公司, 福建 长乐 350212)

摘要:通过纺丝温度、喷丝板上喷丝微孔扁平度、侧吹风参数、集束点位置、拉伸倍率、热辊温度和纺丝速度等工艺条件的优化,研究 55.56 \det 10F 扁平截面锦纶 6FDY 的生产工艺。结果表明:纺丝温度 254~256 °C ,喷丝板上喷丝微孔的扁平度 10 : 1,侧吹风冷却风速 0.60~0.70 m/s,集束点位置 1400~1600 mm 拉伸倍率 1.33,热辊温度 170 °C ,网络压力 0.35 MPa,纺丝速度 4500 m/min,可得到断裂强度为 3.55 cN/dtex、断裂伸长率为 27.28%、条干乌斯特 CV 值为 1.66% 的 55.56 \det 10F 扁平截面锦纶 6FDY,生产稳定,条干均匀,断裂强度较高,且织物具有金属光泽。

关键词: 扁平截面; 锦纶 6FDY; 生产工艺; 扁平度; 纺丝速度

中图分类号: TS154.6 文献标志码: A 文章编号: 1001-7003(2018)01-0023-05 引用页码: 011105

Production process of nylon 6 FDY of flat section

LIU Bingling^{1,2}, JIN Zhixue², XUE Weiren², WEI Fei²

(1. School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China;

2. Fujian Jinjiang Technology Co. , Ltd. , Changle 350212 , China)

Abstract: The production process of 55. 56 dtex/10F nylon 6 FDY of flat section was investigated through the optimization of spinning temperature, flatness of spinneret micro-orifice on the spinneret plate, side blowing parameters, integration position, draw ratio, hot roller temperature and spinning speed. The results show that when the spinning temperature was 254-256 $^{\circ}$ C, the flatness of spinneret micro-orifice was 10:1; the blowing wind speed was 0.60-0.70 m/s; the integration position was 1 400-1 600 mm; the draw ration was 1.33; the hot roller temperature was 170 $^{\circ}$ C; the network pressure was 0.35 MPa and the spinning speed was 4 500 m/min. Under the above conditions, the 55.56 dtex/10F nylon 6 FDY of flat section could be gained, with breaking strength of 3.55 cN/dtex and the elongation at break of 27.28% and CV value of 1.66%. The production process of 55.56 dtex/10F nylon 6 FDY of flat section is stable and the evenness of nylon 6 FDY of flat section improved and the breaking strength increased. Besides, the fabric presented metal luster.

Key words: flat section; nylon 6 FDY; production process; flatness; spinning speed

传统锦纶的截面为圆形,与天然纤维相比,圆形截面的锦纶6纤维吸湿性较差,易弯曲起皱,致使其在高端织造领域的发展受到极大限制[1-2]。异形锦纶6纤维为截面非圆形的锦纶,其研究方向在于增加锦纶6纤维的比表面积,即通过异形截面的设计,使锦纶6纤维的光泽、手感、吸湿性、硬挺度和弹性

收稿日期: 2017-05-09; 修回日期: 2017-12-04

作者简介: 刘冰灵(1986—) ,女 ,工程师 ,主要从事功能性、

差别化锦纶纤维的开发与质量管理。

等得到不同程度的提高^[3-5]。若是采用全消光切片纺丝,与全消光的柔和性相结合,可以发挥出更好的效果。其中,扁平截面纤维具有一定的刚性,毛立感优异,同时拥有吸湿性好、散热快、易于染色和抗起球等优点,在织物风格方面接近于天然纤维材料^[6]。

本文采用熔融纺丝法,以锦纶 6 消光切片为原料制备扁平截面锦纶 6FDY,用全自动单纱强力仪、Nikon Eclipse 等测试扁平截面锦纶 6FDY 的性能与截面形状 探索扁平截面锦纶 6FDY 的生产工艺,使其符合后道加工要求,适用于服装、家纺面料等领域。

1 实 验

1.1 原 料

锦纶 6 消光切片(福建锦江科技有限公司) ,特性黏数(2.47 ± 0.03) dL/g ,熔点 $215\sim225$ ℃ ,TiO₂ 含量 $\geq 1.5\%$,灰分含量 $\leq 0.1\%$,端氨基含量为(47.0 ± 3.0) mmol/kg ,可萃取物含量 $\leq 0.5\%$,水分含量 $\leq 0.06\%$ 。

1.2 仪器设备

高速卷绕机、侧吹风系统(德国巴马格公司), Testo425 精密型风速仪(德国仪器国际贸易(上海) 有限公司),乌斯特 V型条干仪(乌斯特(上海)贸易 有限公司),YG 023B 单纱强力机(常州纺织仪器 厂),Nikon Eclipse E100 显微镜(上海浦赫光电科技 有限公司)。

1.3 工艺流程

切片熔融混合→熔体保温输送→计量泵精确计量→组件过滤吐丝→侧吹风冷却→集束上油→拉伸定型→网络交络→卷装成形→检验→包装入库。

1.4 分析与测试

乌斯特条干值: 乌斯特 V 型条干仪,参照 GB/T 14346—1993《化学纤维 长丝电子条干不匀率试验方法》进行测试。

拉伸性能: YG 023B 单纱强力机,参照 GB/T 14344—2008《化学纤维 长丝拉伸性能试验方法》进行测试。

截面: Nikon Eclipse E100 显微镜,放大倍数1000倍。

2 结果与分析

2.1 纺丝温度

纺丝温度主要取决于聚合体的熔点和熔体黏度 在一定温度下 聚酰胺的熔体黏度随相对分子质量的增大而增大; 在相对分子质量相同的情况下 "熔体黏度随温度的升高而降低。

在扁平截面锦纶 6FDY 的生产过程中 纺丝温度过高,使聚合物热分解加剧,相对分子质量降低,可能出现"气泡丝",造成大量毛丝、断头;纺丝温度过低,则熔体黏度大,熔体的挤出胀大现象严重,熔体出喷丝板后丝条取向度大,影响丝条的拉伸,断头较多^[7]。在合适的温度范围内,随着纺丝温度的升高,熔体黏度呈指数级下降,熔体的流动性能得到良好的改善,熔体出喷丝板后丝条取向度减小,丝条的拉伸效果优良。经实验,纺丝温度控制在 254~256 ℃为宜。

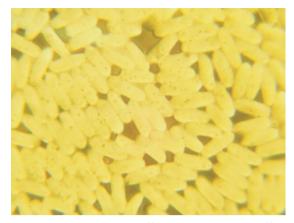
2.2 扁平度

扁平度指喷丝板微孔截面的长宽比。扁平度增大,可使锦纶6纤维的异形度增大,增强其异形效果,使其吸湿性、光泽、抗起毛起球等能力得到显著改善。但是,扁平度过大,会造成扁平截面锦纶6FDY纺丝难度加大及产品强伸指标下降,造成后加工较困难。表1为不同扁平度下生产的扁平截面锦纶6FDY的物性指标。由表1可知,扁平度为10:1时,制得的异形锦纶6纤维的扁平度较高,且断裂强度、断裂伸长率、条干等指标均能满足后续加工和使用要求。因此,选择扁平度为10:1。

表 1 不同扁平度下扁平截面锦纶 6FDY 的条干及物性指标

Tab. 1 Evenness and physical property data of nylon 6 FDY of flat section under different flatness

规格	扁平度	条干 U/%	条干 CV/%	断裂强度/(cN • dtex ⁻¹)	断裂伸长率/%	备注
55.56	8:1	1.35	1.63	3.76	28.52	生产稳定、少量圈丝
55.56 dtex/10F	10:1	1.33	1.66	3.55	27.28	生产稳定、少量圈丝
diex/10r	12:1	1.78	2.33	2.52	23.59	生产稳定、毛丝、圈丝较多


图 1 为扁平度为 10:1 下生产的扁平截面锦纶 6FDY 的纤维截面图。

2.3 侧吹风参数

熔体出喷丝孔后,以侧吹风与丝束进行热交换,使熔体细流凝固成纤维。侧吹风参数主要包括:风温、风湿、风压、风速。与圆形截面纤维相比,扁平丝比表面积较大,易于散热,冷却速度较快,丝条的表层和内层温度梯度增大,丝条可能受到表层的拉伸

应力的局部集中,产生裂痕,影响后加工性能。因此 在扁平截面锦纶 6FDY 的生产过程中,应适当缓和冷却条件,提高风温,延长冷却区,以延缓冷却速度,使塑性区延长,凝固点下移,减小喷丝头拉伸张力,维持纤维扁平度,纤维异形度提高。经实验,侧吹风的风温控制在 22 ~ 23 ℃,湿度控制在 80% 以上,风压控制在 500 Pa,风速应控制在 0.6 ~ 0.7 m/s,冷却效果较优,无飘丝、断头或丝条条干不匀。

扁平度 10:1 下扁平截面锦纶 6FDY 的纤维截面 Fig. 1 Fiber section of nylon 6 FDY of flat section under the flatness of 10:1

2.4 集束点位置

熔体经侧吹风冷却时,空气流动对丝条产生振 荡,这种振荡会引起飘丝、断头或丝条条干不匀,条 干不匀随振荡幅度的增大而增大,随丝条从喷丝板 面到集束位置的距离增加而增大。与圆形截面纤维 相比 扁平丝比表面积较大 易于散热 冷却速度快, 可适当提高集束上油位置,降低丝条与空气间的摩 擦,也减轻丝条受风窗外环境中气流干扰。在扁平 截面锦纶 6FDY 的生产过程中,通过提高集束点位置 降低纺丝张力,又降低丝条的抖动。经实验,集束位 置在1400~1600 mm 为宜。

2.5 拉伸倍率

在扁平截面锦纶 6FDY 的生产过程中 在一定的 拉伸倍率下, 锦纶 6FDY 得到拉伸, 纤维内大分子会 产生取向 并随着拉伸倍率的增大 纤维大分子的取 向度增大[8]。纤维的强伸度与纤维的取向度密切相 关。表 2 为不同拉伸倍率下生产的扁平截面锦纶 6FDY 的物性指标。

由表 2 可知,拉伸倍率增大,扁平截面锦纶 6FDY 的断裂强度稍有下降,原因在于拉伸倍率打破 纤维内大分子结构的平衡,大分子因承受不了强大 的拉力而发生滑移和断裂,使取向度下降。但是,拉 伸倍率较小时,扁平截面锦纶6FDY毛丝、圈丝较多, 产品质量不稳定,无法满足后道加工要求。因此,选 择拉伸倍率为1.33。

表 2 不同拉伸倍率下扁平截面锦纶 6FDY 的条干及物性指标

Tab. 2 Evenness and physical property data of nylon 6 FDY of flat section under different draw ratio

规格	拉伸倍率	条干 U/%	条干 CV/%	断裂强度/(cN • dtex ⁻¹)	断裂伸长率/%	备注
55.56	1.20	1.41	1.83	3.07	32.65	生产稳定、毛丝、圈丝较多
dtex/10F	1.33	1.33	1.66	3.55	27.28	生产稳定、少量圈丝
atex/10f	1.45	1.38	1.76	3.43	25. 10	生产稳定、少量圈丝

2.6 热辊温度

在热辊上 纤维同时受到拉伸和热定型作用 热 辊温度过高 会引起丝束抖动加剧 引发断头而影响 生产; 热辊温度过低可能使纤维造成定型效果差 ,出 现缩管现象。表3为不同热辊温度下生产的扁平截 面锦纶 6FDY 的物性指标。

由表 3 可知,热辊温度升高,扁平截面锦纶 6FDY 的断裂强度稍有增大 原因在于热辊温度主要 是消除拉伸内应力,使成品丝结构性能稳定。热辊 温度为170℃时,丝束中大分子链活动较强,纤维结 晶度较高 丝条的断裂强度较大。因此 选择热辊温

度为170℃ 缠绕5.5 圈。

2.7 网络压力

网络压力升高 各单丝间的缠绕程度提高 有利于 纤维的集束性能提高。但是 过高的网络压力易导致 纤维被吹断造成毛丝 降低纤维的机械性能。表4 为不 同网络压力下生产的扁平截面锦纶 6FDY 的物性指标。

由表 4 可知 在扁平截面锦纶 6FDY 的生产过程 中,网络压力的增大,可提高扁平截面锦纶 6FDY 的 网络度 但是 网络压力过大 易造成丝条吹断 引起 丝束毛丝、圈丝较多,且油剂飞溅严重,能耗增大。 因此 选择网络压力为 0.35 MPa。

表 3 不同热辊温度下扁平截面锦纶 6FDY 的条干及物性指标

Tab. 3 Evenness and physical property data of nylon 6 FDY of flat section under different hot roller

规格	热辊温度/℃	条干 U/%	条干 CV/%	断裂强度/(cN • dtex ⁻¹)	断裂伸长率/%	备注
55.56	145	1.42	1.90	3.42	28.09	生产稳定、少量圈丝
	155	1.38	1.70	3.50	27.55	生产稳定、少量圈丝
dtex/10F	170	1.33	1.66	3.55	27.28	生产稳定、少量圈丝

表 4 不同网络压力下扁平截面锦纶 6FDY 的物性指标

Tab. 4 Physical property data of nylon 6 FDY of flat section under different network pressure

规格	网络压力/MPa	条干 U/%	条干 CV/%	断裂强度/ (cN•dtex ⁻¹)	断裂伸长率/%	网络数/ (个/米)	备注
55.56	0.30	1.35	1.64	3.53	27. 13	1.3	生产较稳定
	0.35	1.33	1.66	3.55	27.28	2.0	生产稳定
dtex/10F	0.39	1.41	1.73	3.50	26.75	2.8	生产过程断头多

2.8 纺丝速度

纺丝速度的提高有利于初生纤维的分子排列和 结构较为有序并趋向稳定,条干均匀性好,经拉伸后 纤维的机械性能良好^[9-10]。表 5 为不同纺丝速度生 产的扁平截面锦纶 6FDY 的物性指标。由表 5 可知,在扁平截面锦纶 6FDY 的生产过程中,纺丝速度过大,易造成冷却不均,引起丝条条干不匀,毛丝、圈丝较多。因此,选择纺丝速度为 4 500 m/min。

表 5 不同纺丝速度下扁平截面锦纶 6FDY 的物性指标

Tab.5 Physical property data of nylon 6 FDY of flat section under different spinning speed

规格	纺丝速度/(m • min ⁻¹)	断裂强度/(cN • dtex ⁻¹)	断裂伸长率/%	备注
55.56	4 300	3.39	28.47	生产稳定、少量圈丝
	4 500	3.55	27.28	生产稳定、少量圈丝
dtex/10F	4 800	3.70	26.02	生产稳定、毛丝、圈丝较多

2.9 正交实验

根据单因素实验结果 采用正交实验 $L_9(3^4)$ 确定最优工艺条件组合。纺丝温度 $255 \,^{\circ}$ 侧吹风冷却风速 $0.65 \, \text{m/s}$ 集束点位置 $1600 \, \text{mm}$ 纺丝速度 $4500 \, \text{m/min}$ 。实验计划如表 $6 \, \text{所示}$ 实验结果如表 $7 \, \text{、表} \, 8 \, \text{所示}$ 。

如表 7 所示 喷丝板喷丝微孔扁平度 8:1 ,拉伸倍率为 1.33 ,热辊温度 145 $^{\circ}$,网络压力 0.39 MPa ,扁平截面锦纶 6FDY 的条干 CV 值最小。如表 8 所示 喷丝板喷丝微孔扁平度 8:1 ,拉伸倍率为 1.33 ,热辊温度 170 $^{\circ}$,网络压力 0.39 MPa ,扁平截面锦纶 6FDY 的断裂强度最大。综合扁平截面锦纶 6FDY 的纺况和物性指标分析 ,因网络压力 0.39 MPa 时 ,扁平截面锦纶 6FDY 的生产过程不稳定 ,断头较多 ,因此 最优工艺条件组合为: 喷丝板喷丝微孔扁平度 8:1 ,拉伸倍率为 1.33 ,热辊温度 170 $^{\circ}$,网络压力 0.35 MPa。

表 6 正交实验设计 Tab. 6 Orthogonal experiment design

因素	扁平度	拉伸倍率	热辊温度/℃	网络压力/MPa
实验 1	8:1	1.20	145	0.30
实验 2	8:1	1.33	155	0.35
实验3	8:1	1.45	170	0.39
实验4	10:1	1.20	155	0.39
实验 5	10:1	1.33	170	0.30
实验6	10:1	1.45	145	0.35
实验 7	12:1	1.20	145	0.35
实验8	12:1	1.33	155	0.39
实验9	12:1	1.45	170	0.30

表7 正交实验结果分析([)

Tab. 7 Analysis of orthogonal experiment results I

条干 CV/%	扁平度	拉伸倍率	热辊温度/℃	网络压力/MPa
I/3	1.67	1.90	1.83	0. 195
II/3	1.73	1.82	1.93	0.186
III/3	2.20	1.88	1.84	0.185

表8 正交实验结果分析(Ⅱ)

Tab. 8 Analysis of orthogonal experiment results II

良亚度 拉伸痉索		热辊温	网络压
無 半及	拉甲后华	度/℃	力/MPa
3.72	3.40	3.43	0.342
3.43	3.50	3.40	0.345
3.20	3.46	3.52	0.348
	3.43	3.72 3.40 3.43 3.50	扁平度 拉伸倍率 度/℃ 3.72 3.40 3.43 3.43 3.50 3.40

2.10 工艺与物性指标

为了提高 55. 56 dtex/10F 扁平截面锦纶 6FDY 的扁平度,且满足呈现金属光泽,改善条干均匀度,提高断裂强度,以工业化生产的圆形截面 55. 56 dtex/10F 锦纶 6FDY 为对照 表 9 为经工艺优化后生产的 55. 56 dtex/10F 扁平截面锦纶 6FDY 与工业化生产圆形截面 55. 56 dtex/10F 锦纶 6FDY 的工艺条件比较 表 10 为经工艺优化后生产的 55. 56 dtex/10F 扁平截面锦纶 6FDY 与工业化生产圆形截面 55. 56 dtex/10F 锦纶 6FDY 的物性指标比较。由表 9、表 10 可知 经工艺优化后生产的 55. 56 dtex/10F 扁平截面锦纶 6FDY 条干均匀 断裂强度较高,条干与物性指标与圆形截面 55. 56 dtex/10F 锦纶 6FDY 相近,避免了扁平截面造成丝束冷却不均引起条干均匀度和断裂强度降低,满足后道加工要求。

表 9 经工艺优化后生产的扁平截面锦纶 6FDY 与圆形截面锦纶 6FDY 的主要工艺参数

Tab. 9 Main technological parameters of optimized nylon 6 FDY of flat section and nylon 6 FDY of circular section

工艺条件	工艺优化后 55.56 dtex/10F 扁平截面锦纶 6FDY	工业化生产圆形截面 55.56 dtex/10F 锦纶 6FDY
纺丝温度/℃	255	252
侧吹风风速/(m • s -1)	0.65	0.68
集束点位置/mm	1 600	1 650
拉伸倍率	1.33	1.25
热辊温度/℃	170	175
网络压力/MPa	0.35	0.39
纺丝速度/(m • min -1)	4 500	4 800

表 10 经工艺优化后生产的扁平截面锦纶 6FDY 与圆形截面锦纶 6FDY 的主要物性指标

Tab. 10 Main physical property data of optimized nylon 6 FDY of flat section and nylon 6 FDY of circular section

物性指标	工艺优化后 55.56 dtex/10F 扁平截面锦纶 6FDY	工业化生产圆形截面 55.56 dtex/10F 锦纶 6FDY
条干 U/%	1.33	1.44
条干 CV/%	1.66	1.82
断裂强度/(cN • dtex ⁻¹)	3.55	3.61
断裂伸长率/%	27. 28	45.30

3 结 论

- 1) 纺丝温度 254 ~ 256 ℃ ,喷丝板喷丝微孔扁平度 10:1 ,侧吹风冷却风速 $0.60 \sim 0.70$ m/s ,集束点位置 $1.400 \sim 1.600$ mm ,拉伸倍率为 1.33 ,热辊温度 $170 \sim 0.35$ MPa ,纺丝速度 4.500 m/min ,可获得 55.56 dtex/10F 扁平截面锦纶 6FDY 生产稳定。
- 2) 以上工艺制备扁平截面锦纶 6FDY 的断裂强度为 $3.55 \, \mathrm{cN/dtex}$ 断裂伸长率为 27.28% 条干乌斯特 CV 值为 1.66% 条干均匀度改善 断裂强度提高,满足后道加工要求。

参考文献:

- [1] AELION R. Nylon 6 and related polymers [J]. Industrial & Engineering Chemistry ,1961 53(10): 826-828.
- [2] 张婧炜. 异形截面纤维及其织物吸湿速干性能的测试和评价[D]. 上海: 东华大学 2013.

 ZHANG Jingwei. Evaluation of Absorption and Quick-Dry Performance of Fabric Made of Shaped Fibers [D]. Shanghai: Donghua University 2013.
- [3] 张一平 . 许瑞超 . 陈莉娜. 纤维异形度对织物导湿快干性能的影响[J]. 纺织学报 2006 27(12):70-73.

 ZHANG Yiping, XU Ruichao, CHEN Li´na. Effect of abnormal degree of fiber cross-section on the moisture-transfer and dry-fast properties of the fabric [J]. Journal of Textile Research 2006 27(12):70-73.
- [4] 樊明山, 金子敏, 陶建伟. 三角中空锦纶丝无缝针织物的 热湿舒适性研究[J]. 丝绸 2011 48(7):15-17.
 - FAN Mingshan , JIN Zimin , TAO Jianwei. Research on hot-

- wet comfort of triangle-hollow polyamide seamless knitted fabric [J]. Journal of Silk 2011 48(7):15-47.
- [5]李映 涨文强,刘传生. 异形聚酯纤维及织物遮光性的研究进展[J]. 合成技术及应用 2014 29(1):29-33.

 LI Ying, ZHANG Wenqiang, LIU Chuansheng. Research progress on the shielding properties of non-circular cross section polyester fiber and fabrics [J]. Synthetic Technology and Application 2014 29(1):29-33.
- [6] 周兆云 ,王华平 ,王朝生 ,等. 扁平纤维熔融纺丝动力学模型 [J]. 聚酯工业 2006 ,19(5):1-4.
 ZHOU Zhaoyun , WANG Huaping , WANG Chaosheng , et al.
 Dynamic model of flat fiber in melt-spinning [J]. Polyester Industry 2006 ,19(5):1-4.
- [7] ZIABICKI A. Studies on the orientation phenomena by fiber formation from polymer melts. Part II: theoretical considerations [J]. Journal of Applied Polymer Science 1960 2(4):24-31.
- [8] RAMESH C , GOWD E B. High-temperature X-ray diffraction studies on the crystalline transitions in the α -and γ -forms of nylon-6 [J]. Macromolecules ,2001 ,34 (10): 3308-3313.
- [9] 席丽媛 . 管新海 赵广兵 . 等. 卷绕速度对锦纶 6 预取向丝 取向结构及性能的影响 [J]. 丝绸 2015 . 52(6):8-13. XI Liyuan , GUAN Xinhai , ZHAO Guangbing , et al. Effect of winding speed on orientation structure and properties of polyamide-6 POY fiber [J]. Journal of Silk . 2015 . 52(6):8-13.
- [10] ZIABICKI A, KEDZIERSKA K. Studies on the orientation phenomena by fiber formation from polymer melts. Part I: preliminary investigations on polycaproamide [J]. Journal of Applied Polymer Science 1959 2(4):14-23.