DOI: 10. 19333/j. mfkj. 2017040010105

胸部形态对文胸塑形效果的影响

鲁 虹12 苗 苗1 于晓坤12 张 欢

(1. 东华大学 服装与艺术设计学院 止海 200051; 2. 东华大学 现代服装设计与技术教育部重点实验室 止海 200051)

摘 要: 针对不同胸型穿着不同文胸具而产生不同塑形效果的问题 选取圆盘形胸部形态志愿者 3 名、圆球形胸部形态志愿者 4 名、纺锤型胸部形态志愿者 1 名 分别穿着选取的 10 款样本文胸 通过三维人体扫描仪测试 BP 间距变化(胸部两最高点间距)和 FNP(前颈点)到 BL(胸围线)的垂直距离变化,分析文胸的聚拢效果和上托效果。结果显示:圆盘型胸部形态女性选择中厚罩杯或超厚罩杯、低胸型钢圈、U型后比的文胸,塑形效果较好;圆球形胸部形态女性选择具有中厚罩杯或超厚罩杯、连鸡心钢圈或者普通型钢圈、普通后比的文胸塑形效果较好;纺锤形胸部形态女性选择中厚罩杯或厚罩杯、连鸡心钢圈、U型普通后比或一字型低后比的文胸,胸部塑形效果较好。

关键词: 胸部形态; 文胸; 聚拢效果; 上托效果中图分类号: TS 941.17 文献标志码: A

Effect of breast shape on shaping figure

LU Hong^{1 2}, MIAO Miao¹, YU Xiaokun^{1 2}, ZHANG Huan¹

- (1. College of Fashion and Art Design ,Donghua University , Shanghai 200051 , China;
- Key Laboratory of Modern Fashion Design and Technique , Ministry of Education , Donghua University , Shanghai 200051 , China)

Abstract: Different breast shapes in different bra has different shaping effect. Selecting 3 volunteers with disc breast shape , 4 volunteers with spherical breast shape , and 1 volunteer with spindle breast , worn the 10 sample bra. Through 3D body scanning instrument scan distance's change of BP (the difference value of BP in wearing a bra and non) and FNP BL (the difference value of vertical distance between the front neck point and the bust line in wearing and not wearing a bra and non) , then analyze effect of shaping figures. The results showed that women with disc breast shape might choose bra whose factors of structure are thick or super thick cup , low front panel and back wing of U shape; women with spherical breast might choose bra that are in middle thick or super thick cup , front panel linked the front middle point or ordinary front panel and common back wing; and women with spindle breast might wear bra that are in middle thick or thick cup , front panel linked the front middle point , back wing in U shape or straight line shape. Therefore , enterprises should take consider of the structure characteristics of underwear bra and the characteristics of consumer's breasts , which will make better in shaping effect of bra.

Keywords: breast shape; bra; gather effect; supporting effect

文胸在中国大陆真正的发展从改革开放后开始 ,比国外文胸发展史较短但发展潜力大^[1]。随着

收稿日期: 2017 - 04 - 06

基金项目:中央高校基本科研业务费专项资金资助 (17D110712)

第一作者简介: 鲁虹 副教授 主要研究方向为服装设计与技

术。通信作者: 于晓坤 Æ-mail: yuxiaokun@ dhu. edu. cn。

社会的发展,女性对美的追求越来越强烈,故市场上出现了各种各样的塑形衣物,文胸作为支托、固定、覆盖和保护女性乳房的功能衣物^[2-3],其对胸部的塑形效果也越来越受到重视。而文胸对胸部的塑形效果又受到多种因素的影响,如胸部形态、文胸结构设计要素等^[4]。服装的设计和生产以人为本,服装的装饰性和功能性都不能脱离人体特征,功能性服

装更注重人体因素^[5] "所以本文选择其中的一个方面 即胸部形态对文胸塑形效果的影响进行探究。近年来,对女性胸部形态特征、文胸结构设计已有一定的研究。温星玉^[6] 按女性乳房前突度,将胸部形态划分为圆盘型、半球型、圆锥型 3 类; 按照乳房中轴线与胸壁之间的关系,将乳房分为挺立型、下倾型、悬垂型; 按照左右乳房的相对位置之间的关系,将乳房分为内敛型、普通型、外扩型。董程媛^[7] 用乳房深度与乳根纵向下部长度的比值将胸部形态分为圆盘型、圆球型、纺锤型及下垂型。在文胸的塑形效果方面 涨文斌等^[8] 和段杏园^[9] 用乳点高的塑形效果有说明上托效果,乳点间距的塑形效果值用来说明聚拢效果,对乳点间距来说,前后测量值差值绝对值越大,说明塑形效果越明显; 对乳点高来说,前后测量值差值越大,说明塑形效果越明显^[10]。

本文采用董程媛^[7] 对胸部形态分类的方法,通过测量乳深(R) 和乳房纵下部长度(L) 的比值来划分胸部形态。胸部形态分类见表 1。

表1 胸部形态分类

- VC -	
胸部形态分类	划分依据
圆盘型	R/L < 0.9
圆球型	$0.9 \le R/L \le 1.1$
纺锤型	R/L > 1.1

注: R 为乳房深度 L 为乳根纵向下部长度。下同。

选取圆盘形、圆球形、纺锤型胸部形态共 8 名受试者(M1~M8),穿着选取的 10 款样本文胸(B1~B10),通过三维人体扫描 BP(Breast Point,胸点)间距变化(在穿着文胸时与未穿着文胸时 BP间距的差值)和 FNP(Front Neck Point,前颈点)到 BL(Breast Line,胸围线)的垂直距离变化(在穿着文胸时与未穿着文胸时前颈点到胸围线之间垂直距离的差值)分别进行文胸的聚拢效果和上托效果分析[9]。

1 实验

1.1 实验对象

选择圆盘型、圆球型、纺锤型 3 种胸部形态,下胸围 73~77 cm、上胸围与下胸围之差为 12.5 cm 左右的的 8 名受试者($M1\sim M8$)进行文胸塑形效果测试。通过美国 NX=16 [TC]²三维人体扫描仪,测得实验对象各项基本指标,见表 2。

1.2 实验文胸

实验采用 10 款 3/4 杯文胸,尺码均为 75B,罩 杯里料是 100% 聚酯纤维,侧翼里料是 70% 锦纶和 30% 氨纶,每款文胸 8 人穿着。文胸主要由罩杯、下

表 2 实验对象胸部基本参数

实验对象	R/L	胸部形态	下胸围/cm	上下胸围差/cm
M1	0. 784	圆盘型	75. 90	12. 10
M2	0. 849	圆盘型	76. 40	12. 20
М3	0. 835	圆盘型	76. 50	12. 45
M4	1. 014	圆球型	75. 12	12. 18
M5	1. 042	圆球型	74. 98	12. 84
M6	1.069	圆球型	74. 60	12. 50
M7	1. 028	圆球型	74. 40	12. 70
M8	1. 249	纺锤型	76. 00	12. 30

扒、钢圈、后比及肩带 5 部分组成,本文对其中的罩杯、钢圈及后比进行了细分,细分标准如下:

①罩杯厚度: 按照罩杯厚度将文胸分为 4 类: 罩杯厚度 < 1.3 cm 为均厚罩杯; 罩杯厚度在 1.3 ~ 1.9 cm 之间为中厚罩杯; 罩杯厚度在 2.0 cm ~ 2.9 cm 之间为厚罩杯; 罩杯厚度 ≥ 3.0 cm 为超厚罩杯。

②钢圈类型: 按照钢圈内高、外高、鸡心及其外在形状分为3 类: 内高 < 2 mm、外在形状似"W"型的钢圈为连鸡心钢圈; 内高 2 ~ 4 mm 之间、外高 > 6 mm 为低胸型钢圈。内高 4 ~ 6 mm 之间、外高 > 6 mm 为普通型钢圈。

③后比高度: 按照文胸侧缝处的后比高度分为 3 类: 后比高度 ≤9.5 cm 为低后比; 后比高度在 9.6 ~11.0 cm 之间为普通后比; 后比高度 > 11.0 cm 为高后比。

④后比形式: 按照文胸后比的外在形状,可将其分为 U 型、一字型。

实验用文胸规格参数见表 3。

表 3 试验用文胸规格参数

编号	文胸图示	罩杯厚度	钢圈类型	后比高度	后比形式
B1		超厚	普通型钢圈	高	U 型
B2		超厚	低胸型钢圈	高	U 型
В3		超厚	普通型钢圈	普通	一字型
B4		厚	普通型钢圈	普通	U 型
В5	200	厚	连鸡心钢圈	低	一字型
В6	2	中厚	连鸡心钢圈	普通	U 型
В7		中厚	低胸型钢圈	低	一字型
В8	The same	中厚	低胸型钢圈	低	U 型
В9	Carried Barrier	均厚	普通型钢圈	高	U 型
B10	A Comment	均厚	普通型钢圈	低	U 型

1.3 实验仪器

采用美国 NX-16 [TC]²三维人体扫描仪 扫描 点精度 <1 mm 点距 <2 mm 测量精度 <3 mm。

1.4 实验步骤

通过三维人体扫描系统,对 3 种不同胸部形态的 8 名志愿者在不穿着文胸的情况下进行胸围、下胸围、FNP~BL间垂直距离、乳间距、BL~UBL(下胸围线)间垂直距离、乳房深度、乳房纵向下部长度等胸部数据采集,得出受试者在未穿着文胸时 BP间距和 FNP 到 BL 垂直距离。受试者未穿着文胸时 BP间距与 FNP 到 BL 间距见表 4。最终将未穿着文胸之前 BP间距和 FNP 到 BL 的垂直距离与穿着文胸之后的 BP间距和 FNP 到 BL 的垂直距离进行差值运算。

表 4 受试者未穿着文胸时 BP 间距与 FNP

	到 BL 间距	cm
受试者	BP 间距	FNP 到 BL 距离
M1	13. 719	16. 477
M2	12. 662	14. 725
M3	14. 514	18. 061
M4	13. 912	18. 100
M5	14. 214	14. 235
M6	13. 968	17. 296
M7	15. 567	15. 157
M8	16. 772	18. 043
·		

2 数据分析

2.1 圆盘形胸部塑形效果

2.1.1 聚拢效果分析

圆盘形胸部形态受试者胸部聚拢效果见图 1。由图 1 可知 M1 受试者未穿着文胸时 BP 距离与穿着中厚罩杯、低胸型钢圈、U 型低后比的 B8 款文胸时 BP 距离的差值最大 ,为 1.352 cm; M2 受试者未穿着文胸时 BP 间距与穿着中厚罩杯、低胸型钢圈、一字型低后比的 B7 款文胸时 BP 间距的差值最大 ,为 1.122 cm; M3 受试者未穿着文胸时 BP 间距与穿着中厚罩杯、低胸型钢圈、U 型低后比的 B8 款文胸时 BP 间距的差值最大 ,为 2.166 cm。

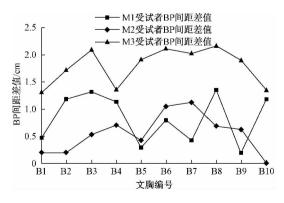


图 1 圆盘形胸部形态受试者胸部聚拢效果分析

由图 1 可知 ,圆盘形胸部形态受试者未穿着文胸时 BP 间距与穿着中厚罩杯、低胸型钢圈、U 型低后比的 B8 款文胸时 BP 间距差值最大。因此对于圆盘形胸部形态消费者来说 ,选择文胸时考虑聚拢效果 ,应首选结构要素涵盖中厚罩杯、低胸型钢圈、U 型低后比文胸为宜。

2.1.2 上托效果分析

圆盘形胸部形态受试者胸部上托效果见图 2。由图 2 可知 M1 受试者未穿着文胸时 FNP 到 BL 的距离与穿着超厚罩杯、低胸型钢圈、U 型高后比的 B2 款文胸时 FNP 到 BL 的距离差值最大 ,为 0.751 cm; M2 受试者未穿着文胸时 FNP 到 BL 的距离与穿着超厚罩杯、低胸型钢圈、U 型高后比的 B2 款文胸时 FNP 到 BL 的距离与穿着超厚罩杯、低胸型钢圈、U 型高后比的 B2 款文胸时 FNP 到 BL 的距离与穿着超厚罩杯、低胸型钢圈、U 型高后比的 B2 款文胸时 FNP 到 BL 的距离差值最大 ,为 1.017 cm。

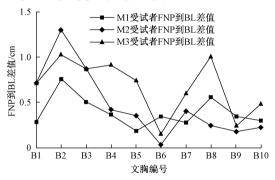


图 2 圆盘形胸部形态受试者胸部上托效果分析

由图 2 可知,圆盘形胸部形态受试者未穿着文胸时 FNP 到 BL 的距离与穿着超厚罩杯、低胸型钢圈、U 型高后比的 B2 款文胸时 FNP 到 BL 的距离差值最大。因此对于圆盘形胸部形态消费者来说,选择文胸时考虑上托效果,应首选结构要素涵盖超厚罩杯、低胸型钢圈、U 型高后比文胸为宜。

综合以上分析可知 圆盘形胸部形态受试者穿着 B8 款文胸时聚拢效果较好 穿着 B2 款文胸时上托效果较好 综合二者的结构要素可知 对于圆盘型胸部形态女性消费者同时考虑到聚拢效果和上托效果 应首选结构要素涵盖中厚罩杯或超厚罩杯、低胸型钢圈、U 型后比文胸为宜。

2.2 圆球形胸部塑形效果

2.2.1 聚拢效果分析

圆球形胸部形态受试者胸部聚拢效果见图 3。由图 3 可知 M4 受试者未穿着文胸时 BP 间距与穿着中厚罩杯、连鸡心钢圈、U 型普通后比的 B6 款文胸时 BP 间距的差值最大 ,为 1.931 cm; M5 受试者未穿着文胸时 BP 间距与穿着中厚罩杯、连鸡心钢

圈、U 型普通后比的 B6 款文胸时 BP 间距的差值最大 ,为 2. 455 cm; M6 受试者未穿着文胸时 BP 间距与穿着中厚罩杯、连鸡心钢圈、U 型普通后比的 B6 款文胸时 BP 间距的差值最大 ,为 2. 281 cm; M7 受试者未穿着文胸时 BP 间距与穿着结构要素为与穿着厚罩杯、连鸡心钢圈、一字型低后比的 B5 款文胸的 BP 间距差值最大 ,为 2. 621 cm。

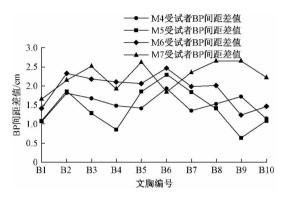


图 3 圆球形胸部形态受试者胸部聚拢效果分析

由图 3 可知 ,M4 ~ M7 四位受试者中有 3 位受试者的未穿着文胸时 BP 间距与穿着中厚罩杯、连鸡心钢圈、U 型普通后比的 B6 款文胸时 BP 间距的差值最大。因此圆球形胸部形态女性消费者 ,选择文胸时考虑聚拢效果 ,应首选结构要素涵盖中厚罩杯、连鸡心钢圈、U 型普通后比文胸为宜。

2.2.2 上托效果分析

圆球形胸部形态受试者胸部上托效果见图 4。由图 4 可知 M4 受试者未穿着文胸时 FNP 到 BL 的距离与穿着厚罩杯、普通型钢圈、U 型普通后比的 B4 款文胸时的 FNP 到 BL 的距离差值最大 ,为 1.209 cm; M5 受试者未穿着文胸时 FNP 到 BL 的距离与穿着超厚罩杯、低胸型钢圈、U 型高后比的 B2 款文胸的 FNP 到 BL 的距离差值最大 ,为 1.709 cm; M6 受试者未穿着文胸时 FNP 到 BL 的距离与穿着中厚罩杯、低胸型钢圈、一字型低后比的 B7 款文胸时的 FNP 到 BL 的距离差值最大 ,为 1.596 cm; M7 受试者未穿着文胸时 FNP 到 BL 的距离与穿着超厚罩杯、普通型钢圈、一字型普通后比的 B3 款文胸时 FNP 到 BL 的距离的差值最大 ,为 1.607 cm。

由图 4 可知 *A* 位圆球形胸部形态受试者上托效果较好的文胸分布比较分散,但综合 4 位受试者的胸部聚拢效果与 B2、B4、B7、B3 的文胸结构要素可知。圆球形胸部女性消费者,选择文胸时考虑到上托效果。应首选结构要素涵盖超厚罩杯、普通型钢圈、U 型普通后比或者一字型普通后比文胸为宜。

综合以上分析可知,圆盘形胸部形态受试者穿着 B6 款文胸时,聚拢效果较好,穿着 B2、B4、B7、B3

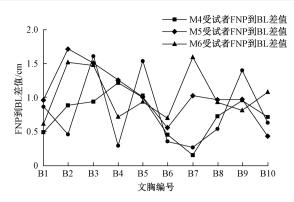


图 4 圆球形胸部形态受试者胸部上托效果分析

款文胸时,上托效果较好,综合 B6 与 B2、B4、B7、B3 的文胸结构要素可知,圆球形胸部形态女性消费者选择文胸时,同时考虑到聚拢效果和上托效果,应首选结构要素涵盖中厚罩杯或超厚罩杯、连鸡心钢圈或者普通型钢圈、普通后比文胸为宜。

2.3 纺锤形胸部塑形效果

2.3.1 聚拢效果分析

纺锤形胸部形态受试者胸部聚拢效果见图 5。由图 5 可知 ,M8 受试者未穿着文胸时 BP 点距离与穿着中厚罩杯、连鸡心钢圈、U 型普通后比的 B6 款文胸时 BP 间距的差值最大 ,为 5. 316 cm。即 M8 受试者穿着 B6 款文胸时 ,胸部聚拢效果较好(图 1~4)。因此纺锤形胸部形态女性消费者 ,选择文胸时考虑到聚拢效果 ,应首选结构要素涵盖中厚罩杯、连鸡心钢圈、U 型普通后比文胸为宜。

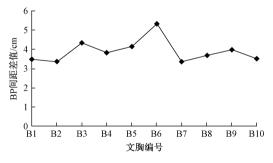


图 5 纺锤形胸部形态受试者胸部聚拢效果分析

2.3.2 上托效果分析

纺锤形胸部形态受试者胸部上托效果见图 6。由图 6 可知 纺锤形胸部形态受试者未穿着文胸时 FNP 到 BL 的距离与穿着厚罩杯、连鸡心钢圈、一字型低后比的 B5 款文胸的 FNP 到 BL 的距离差值最大 ,为 2.353 cm ,即纺锤形胸部形态受试者穿着厚罩杯、连鸡心钢圈、一字型低后比的文胸时上托效果较好。因此纺锤形胸部形态女性消费者 ,选择文胸时 ,考虑到上托效果 ,应首选结构要素涵盖穿着厚罩杯、连鸡心钢圈、一字型低后比文胸为宜。

由图 6 可知 纺锤形胸部形态受试者穿着 B6 款

图 6 纺锤形胸部形态受试者胸部上托效果分析

文胸时聚拢效果较好,穿着 B5 款文胸时上托效果较好,综合 B6 款与 B5 款文胸结构要素可知,纺锤形胸部形态女性消费者,选择文胸时,同时考虑到聚拢效果和上托效果,应首选结构要素涵盖中厚罩杯或后罩杯、连鸡心钢圈、U型普通后比或一字型低后比文胸为宜。

3 结 论

①圆盘形胸部形态消费者选择文胸时,考虑聚拢效果,应首选结构要素涵盖中厚罩杯、低胸型钢圈、U型低后比文胸为宜;选择文胸时,考虑上托效果,应首选结构要素涵盖超厚罩杯、低胸型钢圈、U型高后比文胸为宜;同时考虑到聚拢效果和上托效果,应首选结构要素涵盖中厚罩杯或超厚罩杯、低胸型钢圈、U型后比文胸为宜。

②圆球形胸部形态消费者选择文胸时,考虑聚拢效果,应首选结构要素涵盖中厚罩杯、连鸡心钢圈、U型普通后比文胸为宜;选择文胸时,考虑到上托效果,应首选结构要素涵盖超厚罩杯、普通型钢圈、U型普通后比或者一字型普通后比文胸为宜;同时考虑到聚拢效果和上托效果,应首选结构要素涵

盖中厚罩杯或超厚罩杯、连鸡心钢圈或者普通型钢圈、普通后比文胸为宜。

③纺锤形胸部形态消费者选择文胸时,考虑聚拢效果,应首选结构要素涵盖中厚罩杯、连鸡心钢圈、U型普通后比文胸为宜;如考虑到上托效果,应首选结构要素涵盖穿着厚罩杯、连鸡心钢圈、一字型低后比文胸为宜;同时考虑聚拢效果和上托效果,应首选结构要素涵盖中厚罩杯或后罩杯、连鸡心钢圈、U型普通后比或一字型低后比文胸为宜。

参考文献:

- [1] 黄慧清 董小麟. 从国际比较重看女性内衣市场的发展和营销态势[J]. 大经贸 2007(5):80-82.
- [2] 孟丽华,谢红.基于不同设计要素的文胸罩杯压力和分布[J]. 上海工程技术大学学报,2009,23 (2):161-164.
- [3] 王丽卓 胨东生 林彬. 文胸肩带压强分布分析 [J]. 纺织学报 2009 30(9):102-105.
- [4] 何瑛 陈敏之,方婧.文胸结构与其塑形效果的关系 研究[J]. 浙 江 理 工 大 学 学 报,2009,6 (11):855-857.
- [5] 和艳君. 青年女性乳房形态与文胸钢圈的研究[D]. 杭州: 浙江理工大学,2010.
- [6] 温星玉. 基于乳房形态的钢圈优化设计 [D]. 西安: 西安工程大学 2013(5): 19-21.
- [7] 董程媛. 基于罩杯分类的女性胸部侧面形态研究[D]. 上海: 东华大学 2014.
- [8] 张文斌,占玥. 文胸省道量与塑形效果的相关性研究[J]. 针织工业 2012(6):60-62.
- [9] 段杏元. 文胸省量分配对塑形效果的影响[J]. 纺织导报 2012(7):149-150.
- [10] 陈敏之. 文胸作用下女体胸部形态变化效果分析及 其模拟研究[D]. 上海: 东华大学,2012.